
TCL/TK Command Reference Guide

Applicable Versions:

TCL TK 

Starting 8.0p2 8.0p2 

Latest Addition 8.4.9/8.5a1 8.4.9/8.5a1 

Contents
Fundamentals TK  Other TCL Packages
Sect # Section Title Sect # Section Title Sect # Package 

1.1 Shells 3.1 Bindings and Events 4.1 dde
1.2 System Variables 3.2 Button Widget 4.2 http
1.3 Syntax 3.3 Canvas Widget 4.3 msgcat
1.4 Operators and Expressions 3.4 Checkbutton 4.4 registry
1.5 Pattern Globbing 3.5 Clipboard and Selection4.5 resource
1.6 Regular Expressions 3.6 Console 4.6 tcltest
1.7 Advanced Regular 

Expressions 
3.7 Dialogs

3.8 Entry Widget

TCL 3.9 Fonts

Sect # Section Title 3.10 Frame Widget
2.1 Arrays 3.11 Geometry Management
2.2 Clock 3.12 Images
2.3 Command Evaluation 3.13 Label Widget
2.4 Control Loops 3.14 Labelframe Widget
2.5 Dictionary 3.15 Listbox Widget
2.6 Encodings 3.16 Menu Widget
2.7 Event Loop Handlers 3.17 Menubutton Widget
2.8 File Attributes 3.18 Message Widget

2.9 History 3.19 Options and Resources

2.10 Input/Output 3.20 Panedwindow
2.11 Interpreter Information 3.21 Radiobutton Widget
2.12 Interpreters 3.22Scale Widget
2.13 Lists 3.23 Scrollbar
2.14 Namespaces 3.24 Spinbox
2.15 Packages 3.25 Text Widget

2.16 Procedures 3.26 Toplevel Window

2.17 Strings 3.27 Window Information Index
2.18 Variables 3.28 Window Management A Command Index 

Need to add console (8.3.4+ bindings)
Add packages http (8.0+), msgcat (8.1), opt (8.1), resource, tcltest (8.2+)
Finish 8.5 additions: dict

file:///home/brian/tcl/Tutorials/tcl_tk_ref_guide.html#2_Tcl_Commands_
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Arrays
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Clock
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Command_Evaluation_
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Control_Loops_
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Dictionary
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Encodings


References:
1.  Tcl/Tk v8.0p2 to 8.5 man pages 
2.  Tcl/Tk v8.0p2 to 8.5 source code

3.  Changes in Tcl/Tk ( http://mini.net/tcl/405 ) 
4.  Trial and error

Conventions
bold Denotes literal text such as commands and option switches. 

italic
Denotes variable text such as files, variables, etc. Generally variable refers to the variable contents while 
variableName refers to the name of the variable. 

?. . . ? Denotes an optional specifier. 

<char> Denotes name of key or character when char cannot be represented in document. Unlike bindings, it will not be
shown in bold.

1 Fundamentals

1.1 Shells
Command Description

tclsh options
?fileName? ?arg 
...?

Tclsh is the non-graphical shell used to evaluate fileName. Without fileName, it runs interactively,
reading Tcl commands from stdin and printing command results and error messages to stdout. For
interactive sessions, .tclshrc (or tclshrc.tcl on the Windows) in the home directory of the user is
sourced before evaluating fileName. Valid options are:

-encoding name (Tcl 8.5+) Encoding of fileName.

wish options 
?fileName? ?--?
?arg ...?

Wish is the Tk graphical shell for Tcl, which creates a widow at startup then evaluates fileName.
Without fileName or if the first arg is "--", it runs interactively, reading Tcl commands from stdin and
printing command results and error messages to stdout. For interactive sessions, .wishrc (or wishrc.tcl
on the Windows) in the home directory of the user is sourced before evaluating fileName.

-colormap new Use new private colormap instead of using the default colormap for the screen.

-display display Display and screen on which to display window

-encoding name (Tcl 8.5+) Encoding of fileName. 

-geometry 
geometry

Initial geometry to use for window

-help Show list of valid options

-name name Use name as the title to be displayed in the window, and as the name of the interpreter for send 
commands.

-sync Execute all X server commands synchronously and report errors immediately.

-use id Specifies that the window id to embed the application main window, instead of creating a independent
toplevel window. Id must be specified in the same way as the value for the -use option for toplevel
widgets (i.e. it has a form like that returned by the winfo id command).

-visual visual Specifies the visual to use for the window. See Screen or Window Visuals in Toplevel for visual 
options.

http://mini.net/tcl/405


Shell Provided Variables
Variable Description

argc Number of command line arguments not including the name of the script file. 

argv List of command line arguments. 

argv0 Name of script the interpreter is executing or command interpreter if interactive. 

geometry Value of -geometry option. (wish only)

tcl_interactive Returns 1 if the shell is interactive, otherwise 0.

1.2 System Variables
All TCL/TK variables exist in the global namespace unless otherwise specified.

TCL Variables
Variable Description

auto_execs (8.4+) Array of cmd locations as defined by auto_execok.
auto_index Array of procedures taken from package require commands for auto_load. 

auto_noexec If set, unknown will not auto exec external programs. 

auto_noload If set, unknown will not auto load procedures. 

auto_path List of directories in which package looks for pkgIndex.tcl files when loading packages. Default
paths are: $env(TCLLIBPATH ),$TCL_LIBRARY , $TCL_LIBRARY /.., and $tcl_pkgPath.
Search will also include all immediate subdirectories. Application specific directories can be
appended if necessary. 

env(var) Array where each element name is an enviroment variable. Typical env vars:

HOME User’s home directory

HOSTNAME Name of machine

TZ Time Zone. See clock command for valid time zones.

env(TCL_LIBRARY) If set, specifies the location of the directory containing library scripts.

env(TCLLIBPATH) If set, it must contain a valid Tcl list giving directories in Tcl format with "/" path separators to
search during auto-load operations. Used to initialize the auto_path variable.

errorCode Set to contain a list of one or more elements based on the last Tcl error. Possible values are: 

ARITH  code msg Arithmetic error where code is DIVZERO  (attempt to divide by zero), 
DOMAIN  (arg is outside the domain of a function, such as acos(-3)), 
IOVERFLOW  (integer overflow), OVERFLOW  (floating-point
overflow), or UNKNOWN  (cause of the error cannot be determined)

CHILDKILLED  pid
sigName msg

Child process killed because of a signal.

CHILDSTATUS  pid 
exitCode

Child process has exited with a non-zero exit status.

CHILDSUSP pid
sigName msg

Child process has been suspended because of a signal.

NONE No additional information is available.

POSIX errName msg Error occurred during a POSIX kernel call.

errorInfo Set to the lines of nested code (stack trace) that were being executed when the most recent error 
occurred. 



TCL_LIBRARY Location of standard Tcl libraries used for auto loading procedures. Set to first dir the Tcl startup
script is found in from $env(TCL_LIBRARY  ), compiled in default, location of app, or current 
dir. 

tcl_nonwordchars (8.4+) Set to regular expression for control what are considered "nonword" characters (default is
anything but Unicode word character or Unicode space on Windows). Auto loaded by use of
tcl_endOfWord, etc.

tcl_patchLevel Current patch level of Tcl interpreter. 

tcl_pkgPath List of directories to search for package loading. Typically it contains two directory entries for the
location of the platform-dependent and platform independent packages. 

tcl_platform Array with elements: 

byteOrder Set to: littleEndian  or bigEndian
debug (8.0.4, 8.0.5, 8.2+) Exists and is set to true, only if debug is enabled

isWrapped Set to wrapped Tcl appd if wrapped.

machine 68k, alpha, intel,mips, ppc, sparc, or the result of ’uname -m’ on 
UNIX

os Set to: Windows 95, Windows NT, MacOS, Darwin , SunOS, Linux ,
or the result of ’uname -s’ on UNIX.

osVersion Set to version or the result of ’uname -r’ on UNIX

platform Set to: unix, macintosh, or windows
threaded (8.2+) Exists and is set to true, only if threads are enabled

user (8.1+) Set to user id

wordSize (8.4+) Set to size of word in bytes

tcl_precision Number of significant digits to retain when converting floating-point numbers to strings (default
is 12 and IEEE double uses 17). In TCL 8.0p2 this is harded coded to 12. 

tcl_prompt1 Script to output a prompt. Tcl will call script instead of outputting normal prompt.

tcl_prompt2 Used in a similar way to tcl_prompt1 when a newline is typed but the current command isn’t yet
complete. If tcl_prompt2 isn’t set then no prompt is output for incomplete commands.

tcl_rcFileName (8.4+) Startup Resouce filename.

tcl_rcRsrcName (8.4+) Mac startup resource filename.

tcl_traceCompile Level of tracing info (default is 0 or none) output during bytecode compilation. 1 is 1 line per
command, and 2 is detailed listing of bytecodes. 

tcl_traceExec Level of tracing info (default is 0 or none) output during bytecode execution. 1 is 1 line per
procedure call, 2 is 1 line per command, and 3 is detailed listing (per instruction). 

tcl_version Current version of Tcl interpreter in major.minor form. 

tcl_wordchars (8.4+) Set to regular expression for control what are considered "word" characters (default is
Unicode word character or anything but Unicode space on Windows). Auto loaded by use of
tcl_endOfWord, etc. 

unknown_pending (8.4+) Used by unknown to record the command(s) for which it is searching

TK Variables



Variable Description

env(TK_LIBRARY) If set, specifies the location of the directory containing library scripts.

tk_library
Location of standard Tk libraries used for auto loading procedures. Set to first dir the Tk startup
script is found in from $env(TK_LIBRARY ), compiled in default, location of Tcl library,
location of app, or current dir. 

tk_patchLevel Current patch level of Tk interpreter. 

tkPriv (up to 8.3.5) Array containing information private to standard Tk scripts.

tk::Priv (8.4+) Array containing information private to standard Tk scripts. 

tk_strictMotif When non-zero, Tk tries to adhere to the Motif look-and-feel as closely as possible. 

tk_textRedraw (8.4+) Set by text widgets when they have debugging turned on.

tk_textRelayout (8.4+) Set by text widgets when they have debugging turned on.

tk_version Current version of Tk interpreter in major.minor form. 

1.3 Syntax
The following rules define the syntax and semantics of the Tcl language. There may be any number of variable
substitutions within a single word but each character is processed only once by the Tcl interpreter as part of creating the
words of a command. Substitutions will not affect the word boundaries of a command except for argument expansion. Any
well-formed list is also a well-formed command; where if evaluated, each element of the list will become exactly one word
of the command with no further substitutions. A Tcl script consists of one or more commands or comments.



Syntax Description

; or <newline> Command statement separator except within quotes or braces. 

\<newline> Command statement continuation when at end of line 

<white-space> Command word separator (spaces and tabs only)

# Comments out rest of line if first non white-space character. The interpreter will still eval
braces if present. 

" $var" Quoting with substitutions (command, backslash, and variable). Contents of quotes are
considered one word and substitutions will be performed by the interpreter. Requires a
space between groupings of quotes. 

{expand}<non-whitespace>
(Tcl 8.5+) Argument expansion. Removes {expand} then parses and substitutes the rest of
the word as any other other command word. After substitution, the word is parsed again
without substitutions, and its words are added to the command being substituted.

{$var} Quoting with deferred substitutions except for newline substitution and
{expand}<non-whitespace>. Contents of braces are considered one word and substitutions
will be deferred by the interpreter so they can be evaluated later. Used to produce empty
string with {}. Can be nested. Requires a space between groupings of braces. 

[expr 2+3] Command substitution. Evaluate the command and substitute the result. Interpreter does not
perform backslash or variable substitutions before evaluating the command or on the
results. Substitutions will occur during the command evaluation. Can be nested. 

var Simple variable. Variable name can consist of letters, digits, underscores, but cannot start
with a digit. Can include namespace qualifiers "::".

var(index) Associative array variable where index is element of array var. Same naming standards as 
var.

var(a,b) Pseudo multi-dimensional array variable. Same naming standards as var.

$var, $var(index)
${var}, ${var}($indexVar)

Variable substitution. Replaces variable name with contents of variable without further
evaulation by the interpreter. Can include namespace qualifiers "::". Variable names are
case sensitive. 

\<char > Backslash substitution of <char>. Prevents interpretation of special characters.

\a alert or bell (0x07) \<space> space 

\b backspace (0x08) \\ backslash

\f form feed (0x0c) \ooo 8-bit octal value (o=0-7). 1 to 3 digits. 

\n newline (0x0a) \xhh 8-bit hexadecimal value (h=0-9, a-f). 1 to 2 digits. 

\r carriage return 
(0x0d)

\uhhhh 16-bit unicode hexadecimal value (h=0-9, a-f) (TCL 
8.1+)

\t horizontal tab 
(0x09)

\<char> Prevents special meaning of $, ", {, }, [, ], etc.

\v vertical tab (0x0b)

1.4 Operators and Expressions
Operands
The only data type in Tcl is a string. However, Tcl 8.0+ will also keep a native unit representation of a parameter for faster
processing if the parameter is not used as a string. Some commands will interpret arguments as numbers/boolean in which
case the formats are:



Type Description

Integer 123 (dec with no preceeding zero), 0xff (hex), 0377 (octal has preceeding zero) 

Floating 
Point 2.1, 3., 4.5e6, 7.8e+9

Boolean False = 0, false, no, off; True = true, 1, yes, on  (All versions of expr, only Tcl 8.4+ supports non-values
for the Tcl parser)

Operators
The expr command recognizes the following operators, in decreasing order of precedence. Possible operands are numeric
values, Tcl variables (with $), strings in double quotes or braces, Tcl comands in brackets, and mathematical functions.

Operators Description Validity

- + ~ ! unary minus, unary plus (Tcl 8.4+), bitwise NOT, logical NOT int, fp (except ~)

** (Tcl 8.5+) exponentiation int, fp

* / % multiply, divide, remainder int, fp (except %)

+ - add, subtract int, fp

<< >> bitwise shift left, bitwise shift right int

< > <= >= boolean comparisons int, fp, boolean, string

== != boolean equal, not equal int, fp, boolean, string

eq  ne (Tcl 8.4+) boolean string equal, string not equal string

in  ni (Tcl 8.5+) List  and negated list containment. (string in list)string, list

& bitwise AND (both bits) int

^ bitwise exclusive OR (XOR) (either, but not both bits) int

| bitwise inclusive OR (either bit) int

&& logical AND (lazy evaluation) int, fp, boolean

|| logical OR (lazy evaluation) int, fp, boolean

x ? y : z if x != 0, then y, else z (lazy evaluation) int, fp

Math Functions
Math functions wil return an error if the result would cause an overflow.



Fn Description Fn Description

abs(x) Absolute value int (x) Integer portion of float

acos(x) Arc cosine (-1<=x<=1) log(x) Natural logarithm (x>0)

asin(x) Arc sin (-1<=x<=1) log10(x) Base 10 logarithm (x>0)

atan(x) Arc tangent pow(x,y) Power (x^y)

atan2(y,x) Rectangular (x,y) to polar (r,th), where th=atan2(y,x)rand( ) Random number from 0 to 1

ceil(x) Next integer > x round(x) Round to nearest integer

cos(x) Cosine sin(x) Sine

cosh(x) Hyperbolic cosine sinh(x) Hyperbolic sine

double(x) Convert x to floating point sqrt(x) Square root (x>=0)

exp(x) Exponential function srand(x) Reset rand seed (x is int)

floor(x) Next integer < x tan(x) Tangent

fmod(x,y) Floating point remainder (x/y) tanh(x) Hyperbolic tangent

hypot(x,y) Hypotenuse of a right-angled triangle sqrt(x*x+y*y)wide(x) (Tcl 8.4+) Convert to 64-bits wide

Constant Formula Constant Formula

e exp(1) Pi acos(-1)

1.5 Pattern Globbing
Pattern Description Applicability

? match any single character All

* match zero or more characters All  

[abc] match set of characters All  

[a-z] match range of characters All  

\x match character x used for *?[]\ (Tcl 8.1+ understands the special meaning of \a, \b, \f, \n, \r, \t, \v, 
etc.)

All  

{a,b-z} match any of strings a, b to z , etc. glob only

~/ home directory from $env(HOME) glob only

~user match user ’s home directory glob only

Note: For the glob command, on UNIX a "." at the beginning of a file’s name or just after "/" must be matched explicitly
and all "/" characters must be matched explicitly.

1.6 Regular Expressions
Regular expressions (‘‘RE’’s), as defined by POSIX, come in two flavors: extended REs (‘‘EREs’’) and basic REs
(‘‘BREs’’). EREs are roughly those of the traditional egrep, while BREs are roughly those of the traditional ed.



Pattern Description

regex|regex match either expression 

regex* match zero or more of regex 

regex+ match one or more of regex 

regex? match zero or one of regex 

. any single character except newline 

^ match beginning of string 

$ match end of string 

\c
match character c even if special such as . * ? + [ ] ( ) ^ $ | \
(Tcl 8.1+ understands the special meaning of \a, \b, \f, \n, \r, \t, \v, etc.) 

[abc] match set of characters such as [][{}] 

[^abc] match characters not in set 

[a-z] match range of characters 

[^a-z] match characters not in range 

( ) group expressions 

1.7 Advanced Regular Expressions
Valid in TCL 8.1.1+. Advanced REs ("AREs"’) are basically EREs (extended REs) with some significant extensions. An
ARE is one or more branches, separated by ‘|’, matching anything that matches any of the branches. A branch is zero or
more constraints or quantified atoms, concatenated. It matches a match for the first, followed by a match for the second,
etc; an empty branch matches the empty string. A quantified atom is an atom possibly followed by a single quantifier.
Without a quantifier, it matches a match for the atom.

Quantifiers
Quantifiers restrict the atom match to a subset of possible matches. The nominal qualifiers perfer the largest number of
matches and the non-greedy qualifiers perfer the smallest match. The forms using { and } are known as bounds. The
numbers m and n are unsigned decimal integers with permissible values from 0 to 255 inclusive.

Quantifier Non-Greedy Quantifier What Quantified Atom Matches

* *? a sequence of 0 or more matches of the atom 

+ +? a sequence of 1 or more matches of the atom 

? ?? a sequence of 0 or 1 matches of the atom 

{m} {m}? a sequence of exactly m matches of the atom 

{m,} {m ,}? a sequence of m or more matches of the atom 

{m,n} {m,n}? a sequence of m through n (inclusive) matches of the atom; m may not exceed n 

Atoms



Atom Description
Greedy 
Preference 

(re)
(where re is any regular expression) matches a match for re, with the match noted for possible 
reporting

same as RE

(?:re) as previous, but does no reporting (a ‘‘non-capturing’’ set of parentheses) same as RE 

( ) matches an empty string, noted for possible reporting same as RE 

(?:) matches an empty string, without reporting same as RE 

[chars] a bracket expression, matching any one of the chars (see BRACKET EXPRESSIONS for more 
detail)

none 

. matches any single character none 

\k (where k is a non-alphanumeric character) matches that character taken as an ordinary character,
e.g. \\ matches a backslash character

none 

\c where c is alphanumeric (possibly followed by other characters), an escape (AREs only), see
ESCAPES below

none 

{ when followed by a character other than a digit, matches the left-brace character ‘{’; when
followed by a digit, it is the beginning of a bound (see above)

none 

x where x is a single character with no other significance, matches that character. none 

Simple Constraints
A constraint matches an empty string when specific conditions are met. A constraint may not be followed by a quantifier.
The lookahead constraints may not contain back references, and all parentheses within them are considered non-capturing.
An RE may not end with ‘\’.

Constraint Description
Greedy 
Preference 

^ matches at the beginning of a line none

$ matches at the end of a line none

(?=re) positive lookahead (AREs only), matches at any point where a substring matching re 
begins

none

(?!re) negative lookahead (AREs only), matches at any point where no substring matching re 
begins

none

Bracket Expressions



Expression Description

[abc] match set of characters such as [][{}-]

[^ abc] match characters not in set such as [^][{}-]

[a-z] match range of characters. A character class may not be used as an endpoint of a range.

[^ a-z] match characters not in range

[.ch.] a collating element (a character, a multi-character sequence that collates as if it were a single character, or a
collating-sequence name for either) (Note: Tcl currently has no multi-character collating elements.)

[[.ch.]] a collating element within a set

[=e=] equivalence class, standing for the sequences of characters of all collating elements equivalent to that one,
including itself. (Note: Tcl currently implements only the Unicode locale. It doesn’t define any equivalence 
classes.)

[=e=] equivalence class within a set.

[:class:] Any character in class. See Character Classes below.

[[: class:]] A character class within a set.

[[:<:]] constraint matching empty strings at the beginning of word (word is [[:alnum:]_] )

[[:>:]] constraint matching empty strings at the end of a word (word is [[:alnum:]_] )

Character Classes
Character classes are used to define a set of characters in a cross platform way. Tcl only supports Unicode classes.

Class Description Class Description

alnum Unicode alphabet or digit characters 
[[:alpha:][:digit:]]

integer Valid Tcl form of integer (string is only)

alpha Unicode alphabet characters 
[[:lower:][:upper:]]

lower Unicode lower-case alphabet characters

ascii Characters [\u0000-\u007f]
(7-bit ASCII) (machine specific)

print Unicode printing characters, including space

blank Space or tab characters (not used by string 
is)

punct Unicode punctuation characters (non-alnum or
space) (string is only) 

boolean true or false, 0 or 1, yes or no, on or off 
(string is only)

space Unicode white-space characters [\f\n\r\t\v ]

control Unicode control characters true true, 1, yes, on (string is only)

digit Unicode digit charactes (not limited to 
[0-9])

upper Unicode upper-case alphabet characters

double Valid Tcl form of double (string is only) wideinteger Valid Tcl wide integer. (string is only) 

false false, 0, no, off (string is only) wordchar Unicode word characters, [[:alnum:][:punct:]]  
(string is only) 

graph Unicode printing characters, except spacexdigit hexadecimal digit characters [[0-9][A-F][a-f]]

Character-Entry Escapes
Character-entry escapes (AREs only) exist to make it easier to specify non-printing and otherwise inconvenient characters
in REs.



Char Description Char Description

\a alert or bell (0x07) \t horizontal tab (0x09) 

\b backspace (0x08) \uhhhh 4 digit (16-bit) hex unicode
char (h=0-9, a-f, A-F)

\B synonym for \ to help reduce backslash doubling in some apps with
multiple levels of backslash processing

\Uhhhhhhhh8 digit (32-bit) hex unicode
char (h=0-9, a-f, A-F)

\cX (where X is any character) the character whose low-order 5 bits are
the same as those of X, and whose other bits are all zero

\v vertical tab (0x0B)

\e the character whose collating-sequence name is ‘ESC’, or failing that,
the character with octal value 033

\xhh ? digit hexadecimal char
(h=0-9, a-f, A-F) 

\f form feed (0x0C) \0 the character whose value is 0

\n newline (0x0A) \oo 2 digit (6-bit) octal value 
(o=0-7) 

\r carriage return (0x0D) \ooo 3 digit (8-bit) octal value 
(o=0-7) 

Class-Shorthand Escapes
Class-shorthand escapes (AREs only) provide shorthands for certain commonly-used character classes. Within bracket
expressions, ‘\d’, ‘\s’, and ‘\w’ lose their outer brackets, and ‘\D’, ‘\S’, and ‘\W’ are illegal.

Char Description Char Description

\d [[:digit:]] \D [^[:digit:]]
\s [[:space:]] \S [^[:space:]]
\w [[:alnum:]_]  (note underscore)\W [^[:alnum:]_]  (note underscore)

Constraint Escapes
A constraint escape (AREs only) is a constraint, matching the empty string if specific conditions are met. A word is defined
as in the specification of [[:<:]] [[:>:]] . Constraint escapes are illegal within bracket expressions. A back reference (AREs
only) matches the same string matched by the parenthesized subexpression specified by the number. The subexpression
must entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading parentheses.
Non-capturing parentheses do not define subexpressions.

Char Description Char Description

\A matches only at the beginning of the
string whereas ^  also matches empty
string after a newline

\Y matches only at a point that is not the beginning or end of a word

\m matches only at the beginning of a word\Z matches only at the end of the string whereas $ also matches empty
string before a newline 

\M matches only at the end of a word \m (where m is a nonzero digit) a back reference

\y matches only at the beginning or end of
a word

\mnn (where m is a nonzero digit, and nn is some more digits, and the
decimal value mnn is not greater than the number of closing
capturing parentheses seen so far) a back reference

Metasyntax
Normally the flavor of RE being used is specified by application-dependent means. However, this can be overridden by a
director. An ARE may begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic characters)
specifies options affecting the rest of the RE. These can supplement and/or override any options specified by the
application. Embedded options take effect at the ")" terminating the sequence. They are available only at the start of an



ARE, and may not be used later within it.

Director Description

*** At the start of a RE, then the rest of the RE is an ARE.

***=
At the start of a RE, then the rest of the RE is to be taken to be a literal string, with all characters considered
ordinary characters. 

b rest of RE is a BRE

c case-sensitive matching (usual default)

e rest of RE is an ERE

i case-insensitive matching (x becomes [xX] and [^x] becomes [^xX])

m historical synonym for n

n newline-sensitive matching ("." and bracket expressions using ^ will never match the newline character. $ and ^
will match the empty string before and after a newline in addition to at the end and beginning of a string 
respectively)

p partial newline-sensitive matching ("." and bracket expressions using ^ will never match the newline character.)

q rest of RE is a literal ("quoted") string, all ordinary characters

s non-newline-sensitive matching (usual default)

t tight syntax (usual default; all characters are significant)

w inverse partial newline-sensitive ("weird") matching ($ and ^ will match the empty string before and after a
newline in addition to at the end and beginning of a string respectively)

x expanded syntax (see below)

Expanded Syntax
When selected by the -expanded switch or x option, white-space (blank, tab, newline, and [[:space:]]) and all characters
between a # and the following newline or end of RE are ignored. Exceptions are: when preceeded by a \, within a bracket
expression, and within multi-character symbols (illegal).

Comments
Outside bracket expressions, the sequence "(?#ttt)" (where ttt is any text not containing a ")") is a comment and will be
ignored. This syntax is deprecated in favor of the expanded syntax.

Matching
In the event that an RE could match more than one substring of a given string, the RE matches the one starting earliest in
the string. If the RE could match more than one substring starting at that point, its choice is determined by its preference:
either the longest substring, or the shortest. A branch has the same preference as the first quantified atom in it which has a
preference. An RE consisting of two or more branches connected by the | operator prefers longest match. Subject to the
constraints imposed by the rules for matching the whole RE, subexpressions also match the longest or shortest possible
substrings, based on their preferences, with subexpressions starting earlier in the RE taking priority over ones starting later.
Note that outer subexpressions thus take priority over their component subexpressions. Match lengths are measured in
characters, not collating elements. An empty string is considered longer than no match at all.

2 Tcl Commands



2.01 Arrays
Tcl arrays are associative arrays based on a hash table data structure. Elements of an array can consist of any string or
number unlike traditional array elements which are integers only. For the array commands below, arrayName is the name
of the array not the array contents (don’t use variable substitution).

Command Description

array anymore 
arrayName searchId

Returns 1 if more elements are left to be processed in searchId of arrayName , 0 if none. 

array donesearch 
arrayName searchId

Terminates the array search searchId on arrayName. 

array exists 
arrayName

Returns 1 if arrayName is an array variable, 0 if not. 

array get arrayName 
?pattern?

Returns a list of all element and value pairs in arrayName or those matching pattern using 
Pattern Globbing. The first is the element name and the second is the element value. If no match
then an empty string is returned. 

array names 
arrayName ?mode? 
?pattern?

Returns a list of all element names in arrayName or those matching pattern. In Tcl 8.4+, mode
can be -exact (same string), -glob (default, using Pattern Globbing), or -regexp (using Regular 
Expressions). If no match then an empty string is returned. 

array nextelement 
arrayName searchId

Returns name of next element inarrayName for the search searchId . Returns an empty string if
no more elements exist. 

array set arrayName 
list

Sets values of one or more elements in arrayName from list in array get format. 

array size arrayName Return number of elements in arrayName. If not an array then 0 is returned. 

array startsearch 
arrayName

Initiates an element-by-element search of arrayName. Returns a search id. Muliple searches of
same array are supported. 

array statistics 
arrayName

(Tcl 8.4+) Returns number of entries in the table, the number of buckets, and the utilization of the
buckets of the hash table that represents arrayName .

array unset 
arrayName ?pattern?

(Tcl 8.3+) Unsets all of the elements in arrayName or matching pattern using Pattern Globbing .
If arrayName is not an array or no match is found, an error is returned.

parray  arrayName 
?pattern?

Print to standard output the names and values of all elements in arrayName or matching pattern
using Pattern Globbing. 

2.02 Clock
Tcl does not include any leap seconds in clock values, seconds are counted as if each UTC day has exactly 86400 seconds.
Tcl responds to leap seconds by speeding or slowing its clock by a tiny fraction for some minutes until it is back in sync
with UTC; its data model does not represent minutes that have 59 or 61 seconds. 

UNIX and Windows NT Epoch is 1 January 1970, 00:00 UTC. This is the epoch for all systems in Tcl 8.5+.
Julian Epoch is 1 January, 4713 BCE of the proleptic Julian calendar

Command Description 

clock add clockVal ?count 
unit? ?count unit...? ?-option
value? ?-option value...?

(Tcl 8.5+) Add all count unit (can be negative) conversions to integer clockValin the
specified order. Count is an integer of type unit. Unit is seconds, minutes, hours, days,
weeks, months, or years, or any of their unique prefixes. While leap days and Daylight
Savings Time are accounted for in the conversions, leap seconds are not. For ambiguious
times where the same local time occurs twice on the same day, the earlier time is used.
For impossible times (skipped hour for Daylight Savings Time, etc.), the time is
converted as if the clock had not changed. 

http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Pattern_Globbing_


-gmt boolean If true, use GMT/UTC time zone, if false (default) use local time zone. 

-locale name

Specifies that conversions should be done according to the rules of locale name. Valid
names are: any valid locale supported by msgcat, "system" to use the current system 
locale (from LC_TIME env var or Control Panel date/time on MS Windows), or {} to use 
Tcl’s default locale (default for no -locale). 

-timezone timeZone

Specifies that conversions should be done according to the rules of Time Zone timeZone.
See Time Zones below for the valid time zones. The time zone preference order is: 
-timezone or -gmt options, TCL_TZ env var, TZ env var, Control Panel time zone on MS 
Windows, or the C language local time as defined by the localtime and mktime functions.

clock clicks ?-option? Returns hi-res system-dependent integer time value. In Tcl 8.5+, returned value is a wide
int. Options are:

-microseconds
(Tcl 8.5+) Return current time as system-dependent integer value of microsecondssince 
"epoch". 

-milliseconds
(Tcl 8.3+) Return current time as system-dependent integer value of milliseconds since 
"epoch". 

clock format clockVal 
?-option value? ?-option value 
...?

Convert integer clockVal in seconds to human-readable format defined by the format
string.  Valid options are:

-format  string
Specifies the output format. See Clock Formats below for valid format fields. The default
format is "%a %b %d %H:%M:%S %Z %Y" prior to Tcl 8.5 and "%a %b %d
%H:%M:%S %z %Y" for Tcl 8.5+.

-gmt boolean If true, use GMT/UTC time zone, if false (default) use local time zone.

-locale name

(Tcl 8.5+) Specifies that conversions should be done according to the rules of locale 
name. Valid names are: any valid locale supported by msgcat, "system" to use the current
system locale (from LC_TIME env var or Control Panel date/time on MS Windows), or
{} to use Tcl’s default locale (default for no -locale). The current locale can be used with
-locale current.

-timezone timeZone

(Tcl 8.5+) Specifies that conversions should be done according to the rules of Time Zone 
timeZone. See Time Zones below for the valid time zones. The time zone preference
order is:  -timezone or -gmt options, TCL_TZ env var, TZ env var, Control Panel time
zone on MS Windows, or the C language local time as defined by the localtime and
mktime functions.

clock microseconds 
(Tcl 8.5+) Return current time as system-dependent integer value of microsecondssince 
"epoch". 

clock milliseconds
(Tcl 8.5+) Return current time as system-dependent integer value of millisecondssince 
"epoch". 

clock scan "dateString"
?-option value? ?-option value 
...?

(Tcl 8.5+) Convert dateString to an integer clock value.  In Tcl 8.5+, returned value is a
wide int. While leap days and Daylight Savings Time are accounted for in the clock add
conversions, leap seconds will not.  

-base clockVal Use integer clockVal (in seconds) as the base for date-relative conversions in dateString.

-format  string (Tcl 8.5+)Specifies the input format. See Clock Formats below for valid format fields. 

-gmt boolean If true, use GMT/UTC time zone, if false (default) use local time zone. 

-locale name

(Tcl 8.5+) Specifies that conversions should be done according to the rules of locale 
name. Valid names are: any valid locale supported by msgcat, "system" to use the current
system locale (from LC_TIME env var or Control Panel date/time on MS Windows), or
{} to use Tcl’s default locale (default for no -locale). 

-timezone timeZone

(Tcl 8.5+)Specifies that conversions should be done according to the rules of Time Zone 
timeZone. See Time Zones below for the valid time zones. The time zone preference
order is:  %z or %Z formats, -timezone or -gmt options, TCL_TZ env var, TZ env var, 
Control Panel time zone on MS Windows, or the C language local time as defined by the
localtime and mktime functions.



clock scan "dateString" ?-base 
clockVal? ?-gmt boolean?

Convert dateString to an integer clock value. If only a time is specified, current date is
assumed. Without time, midnight is assumed. Without time zone uses local zone unless 
-gmt is specified. If -base is used, the date in clockVal is used for determining the time
on a specific day or other date-relative conversions (like daylight savings time for day or
greater units). Allowed range of years is 1902 to 2037. DateString consists of zero or
more specifications of the following forms:

time Time of day form: "hh?:mm?:ss?? ?meridian? ?zone?" or "hhmm ?meridian?" ?zone? .
Without meridian, hh is interpreted on a 24-hour clock.

date Month, day, year forms: "mm/dd?/yy?", "monthname dd?, yy?", "dd monthname ?yy?",
"day, dd monthname yy", "?CC?yymmdd" (Tcl 8.3+), "?CC?yy-mm-dd" (Tcl 8.3+),
"dd-monthname-?CC?yy" (Tcl 8.3+). Default yy is current year. If yy< 100, 00-38 is
2000-2038 (prior to Tcl 8.3), 00-68 is 2000-2068 (Tcl 8.3+), 69-99 is 1969-1999.

ISO-8601-point-in-time (Tcl 8.3+) ISO 8601 format: "CCyymmddThhmmss", "CCyymmdd hhmmss", or 
"CCyymmdd Thh:mm:ss".

relative time Relative to current time. Format is number unit. Units are: year,fortnight , month, week, 
day, hour, minute (or min ), and second (or sec) and their plurals, with modifiers: 
tomorrow ,yesterday, today, now, last, this, next, and ago. Daylight savings time
correction is applied only for day, week, fortnight, month, or year.

stardate float (Tcl 8.3+) Returns time in Star Trek stardate floating point format.

now Use current time

clock seconds Return current time as system-dependent integer value of seconds since "epoch". In Tcl
8.5+, returned value is a wide int. 

Clock Formats



Field Description Field Description Field Description

%% % %j Day of Year (001-366) %t (All UNIX,845+ MS Win) 
Tab 

%a Weekday (abbr) %J (Tcl 8.5+) Julian Day Number %T (All UNIX,8.4+ MS Win) 
Locale Time. "C" locale
default:" %H:%M:%S" 

%A Weekday (full) %k (Tcl 8.4+) Hour (0-23) %u (Tcl 8.4+) Weekday (1-7), 
1=Mon 

%b Month (abbr) %l (Tcl 8.4+) Hour (1-12) %U Week (00-53), starts on Sun 

%B Month (full) %m Month (01-12)
%V 

(Tcl 8.3+) Week (00-52),
Week 1 contains Jan 4.
ISO8601 fiscal week. 

%c
Locale date & time. "C" locale
default: "%a %b%d %Y
%I:%M:%S %p %Z"

%M Minute (00-59) %w Weekday (0-6) 0=Sun 

%C Year prefix (19 or 20) %n (All UNIX,8.4+ MS Win) 
Newline

%W Week (00-53), starts on Mon 

%d Day (01-31) %N (Tcl 8.5+) Month number (1-12)
%x

Locale Date. "C" locale 
default: "%m/%d/%y" 

%D
(All UNIX,8.4+ MS Win)
Locale Date. "C" locale 
default: "%m/%d/%y"

%O#
(Tcl 8.5+) Locale alt
numerals for d, e, H, I, k, l,
m, M, S, u, w, y

%X
Locale Time. "C" locale
default:" %I:%M:%S %p" 

%e (All UNIX,8.4+ MS Win) Day
of month (1-31)

%p Locale AM/PM
%y Year (00-99) 

%E# (Tcl 8.5+) Locale’s alt
calendar for c, C, x, X, y, Y

%P (UNIX only) Locale am/pm %Y Year (full) 

%g
(Tcl 8.4.7+) Year for
%V (00-99)

%Q (Tcl 8.3+) Stardate %z
(Tcl 8.5+) Time Zone Offset
in +/-hhmm from GMT 

%G
(Tcl 8.4.7+) Year for
%V (full)

%r
(All UNIX,8.4+ MS Win) Locale
meridian time. "C" locale
default: "%I:%M:%S %p". 

%Z Time Zone name 

%h (All UNIX,8.4+ MS Win)
Month (abbr)

%R (All UNIX,8.4+ MS Win) Locale
Time. "C" locale default: 
%H:%M

%+ (Tcl 8.5+)  Date/Time ’%a
%b %e %H:%M:%S %Z %Y’ 

%H Hour (00-23) %s (Tcl 8.3+) Seconds since epoch

%I Hour (01-12) %S Seconds (00-59)

where locale defaults are based on the environment variables LC_ALL and LC_TIME.

Time Zones



adt - Atlantic Daylight Time
east - Eastern Australian 
StandardTime

mdt - Mountain DaylightTime swt - Swedish WinterTime 

ahst - Alaska-Hawaii 
Standard Time

edt - Eastern DaylightTime
mest - Middle European 
SummerTime

ut - Universal (Coordinated) 

ast - Atlantic Standard Timeeest - Eastern European
Summer Time

met - Middle EuropeanTime
utc - Universal Coordinated 
Time 

at - AzoresTime
eet - Eastern EuropeTime,
USSR Zone 1

mewt - Middle European 
WinterTime

wadt - West Australian 
DaylightTime  

bst - British Summer Time est - Eastern StandardTime mst - Mountain StandardTime
wast - West Australian 
StandardTime 

bt - BaghdadTime, USSR
Zone 2

gmt - Greenwich MeanTime ndt - Newfoundland Daylight wat - West Africa Time 

cadt - Central Australian
Daylight Time

gst - Guam StandardTime,
USSR Zone 9

nft - NewfoundlandTime
wet - Western 
EuropeanTime 

cast - Central Australian 
Standard Time

hdt - Hawaii DaylightTime
nst - Newfoundland 
StandardTime

ydt - Yukon DaylightTime 

cat - Central Alaska Time hst - Hawaii StandardTime nt - Nome Time yst - Yukon StandardTime 

cct - China Coast Time,
USSR Zone 7

idle - International Date Line 
East

nzdt - New Zealand 
DaylightTime

zp4 - USSR Zone 3 

cdt - Central Daylight Time
idlw - International Date Line 
West

nzst - New Zealand 
StandardTime

zp5 - USSR Zone 4 

cest - Central European 
Summer Time

ist - Indian StandardTime zt - New Zealand Time zp6 - USSR Zone 5 

cet - Central European Time it - Iran Time pdt - Pacific DaylightTime

cst - Central Standard Time
jst - Japan StandardTime,
USSR Zone 8

pst - Pacific StandardTime

eadt - Eastern Australian
Daylight Time

jt - Java Time sst - Swedish SummerTime

In Tcl 8.5+, the following forms are supported:

Format Description Examples 
Name Time Zone Acronym (see table above) UTC, CDT

:name

Locale Time Zone. Special case of :localtime (local time per C library).
For a complete listing, see:
"/no_backup/tools/lib/tcl8.5/clock/tzdata" for Non-UNIX or
"/usr/share/zoneinfo" for UNIX.

:UTC, 
:America/New_York 

+/-####
+/-######

Time Zone Offset in hours, minutes, and seconds (if six digits are present)
from UTC.
Use a plus sign for east of GMT and a minus sign for west of GMT. 

+0500, -063000

std offset ?dst 
offset,rule?

Posix specification of the TZ environment variable

2.03 Command Evaluation
Command Description 

auto_execok cmd Returns full pathname of cmd for use by exec if it exists in the dirs specified by 
$env(PATH ) or is built-in, otherwise returns an empty string. Only finds files with execute
bits set.



auto_import pattern (Tcl 8.0.3+) Search auto_index array and forcably load procedures matching pattern. In
Tcl 8.3.4+, uses namespace import style matching.

auto_load cmd Attempts to load the definition for cmd by searching $auto_path then 
$env(TCLLIBPATH)  for a tclIndex file which defines the location and script to loadcmd.
Returns 1 if successful, 0 if not.

auto_mkindex dir pattern
?pattern ...?

(Tcl 8.3+) Generate a tclIndex file from all files in the specified directory matching glob 
patterns for use by auto_load.

auto_mkindex_old dir args (Tcl 8.3+, was auto_mkindex prior to 8.3) Generate a tclIndex file from all files in the
specified directory. Only procedures with "proc" at the beginning of a line (no leading
spaces) are included.

auto_reset Destroys cached information used by auto_execok and auto_load. 

bgerror  message

(Undefined for TCL) User defined handler for background Tcl errors. Default for Tk is to
post dialog box with error message and ask if stack trace should be shown. The errorInfo
and errorCode variables are set to their values at the time the error occurred before calling 
bgerror . 

catch script
?resultVarName? 
?optionsVarName?

Evaluate script and trap any errors. If there is an error, the non-zero error code (see return)
is returned and the error message is stored in resultVarName. If not, 0 (TCL_OK) is
returned with resultVarNameset to the value returned from the script. Within script,break
can be used to terminate the script. In Tcl 8.5+, optionsVarName is set to a dictionary of the
return options returned by evaluation of script. If the error code is TCL_RETURN, the
options dict will set -code and -level to values set by the return command. For all other
errors, -code will be set to the error code and -level will be 0. For TCL_ERROR, the dict
will also include -errorinfo (contents of ::errorInfo), -errorcode (contents of ::errorCode),
and -errorline (line of script where error occurred).

error  message ?info? ?code?Interrupt command interpretation and pass back the error described in message. Global
variables errorInfo  and errorCode will be set to info and code if defined. 

eval arg ?arg ...? Returns result of evaluating the concatenation of args as a Tcl command. 

exit ?returnCode? Terminate the process, returningreturnCode (default is 0) to the system as the exit status.
UNIX limits range from 0 to 255.

expr arg ?arg ...? Concatenates args with separators, evaluates the result as a Tcl expression, and returns the
value. See Operators and Math Functions for more info. Tcl 8.3.3+ allows for setting
variables via command substution within an expression. To do numeric comparisons, all
values must be numeric. To return a result in floating point format, at least one value must
be in floating point format. The precision is determined by the contents of the tcl_precision
variable. In TCL 8.0+, it is more efficient to group expressions within braces {} to let expr
perform substitutions. To compare strings, use quotes around the strings. In TCL 8.4+,
"nan" is recognized as Not a Number and "inf" or "infinity" is recognized as infinite.

load fileName pkgName 
?interp?

Load binary code (shared library) for pkgName from fileName into interp (default is
current). If fileName is an empty string, Tcl uses pkgName to find matching statically
linked then dynamic library. Without pkgName, Tcl guesses the name.

rename oldName newNameRename command oldName to newName. If newName is the empty string, command 
oldName is deleted. Can include namespace qualifiers.

send options ?--? interp
command ?arg ...?

(Tk UNIX only) Evaluates command with args in the Tk application app (set with tk 
appname command) on the same display and returns the result or command execution
error. Options are: 

-async
Will complete immediately without waiting forcommand to complete in the target
application. No results will be available and errors will be ignored. 

-displayof window Use window’s display instead of the current display. 

source fileName Read file fileName and evaluate its contents as a Tcl script. Returns the return value of last
comand in script or error if one occurs. For MS Windows and all platforms in Tcl 8.4+, the
EOF is set to \x1a.

source 
-encodingencodingName 
fileName

(Tcl 8.5+) Read file fileName in encoding encodingName (defult is system encoding) and
evaluate its contents as a Tcl script. Returns the return value of last comand in script or
error if one occurs. Default EOF is set to \x1a. 



subst ?-nobackslashes? 
?-nocommands? 
?-novariables? string

Returns result of backslash, command, and variable substitutions on string. Each
substitution type may be turned off by the corresponding option. Except for command, the
"{} chars do not have a special meaning.

tcl_findLibrary  basename
version patch initScript
envVarName varName

(Tcl 8.0.3+) Used by extensions to look for their script library. Uses basename and version
for directory name. The initScript file will be sourced into the interpreter and the directory
will be stored in the global variable varName unless varName is already defined. Checks
directories: directory from env(envVarName); relative to Tcl library directory; relative to
the executable file in the standard installation bin or bin/ arch directory; relative to the
executable file in the current build tree; relative to the executable file in a parallel build 
tree. 

time script ?count? Call interpreter count times (default is 1) to evaluate script. Returns string of the form "#
microseconds per iteration".

unknown cmdName ?arg 
...?

Called when the Tcl interpreter encounters an undefined cmdName. Default unknown calls 
auto_load then auto_exec to load or exec cmdName with args. If not successful and called
from top-level but outside of a script, it checks for csh like-history substitution forms of !! , 
!event , or ̂ old^new?̂ ?. If found it performs the history substitution. Lastly it checks if 
cmdName is a unique abbreviation of an existing Tcl command and if so expands the
command name and executes it. If none were successful, an error is returned.

unload fileName ?pkgName? 
?interp?

(Tcl 8.5+) Unload package pkgName from shared library filename previously loaded with
load from interp interp.Without interp, the current interp is used. Without pkgName, Tcl
guesses the name in the same manner as load. 

-nocomplain Supresses all error messages.

-keeplibrary
Prevents unload from issuing the operating system call that will unload the library from the 
process.

2.04 Control Loops



Command Description 

break Abort innermost loop (for, foreach, while, catch) or tag for a Tk binding script containing 
command. 

case Obsolete, use switch. 

continue Skip to the next iteration of innermost loop (for, foreach, while) or tag for a Tk binding
script containing command. 

for  {start} {test} {next} 
{body}

First evaluate start then repeatedly evaluate body then next if expr test returns a non-zero
result. If strings are used as operands in the expression, they must be quoted or in braces. 

foreach varname {list} 
{body}

For each item in list, set varname to the item’s value and evaluate body. 

foreach {varlist1} {list1}
?{varlist2} {list2} ...? {body}

Same as above, except for each iteration of the loop, the variables in varlistN are set to the
next entry in their corresponding listN. 

if  {expr1} ?then? {body1} 
elseif  {expr2} ?then 
?{body2} ... ?else? 
?{bodyN}?

If expr1 evaluates true, body1 is evaluated, otherwise if expr2 is true, body2 is evaluated,
etc. If none of the expressions evaluate to true then bodyN is evaluated. If strings are used
as operands in the expression, they must be quoted or in braces. 

switch ?options? ?--? string
pattern1 {body1} ?pattern2
{body2} ...?

For the first pattern that matches string , evaluate the corresponding body and return result.
If no pattern is matched and default is the last pattern, then its body is evaluated, otherwise
an empty string is returned. If body is set to " -", the body for the next pattern that isn’t "-"
will be used. Options are: 

-exact String must contain exactly the same string as pattern. This is the default option.

-glob Compare patterns to string using Pattern Globbing.

-regexp Compare patterns to string using Regular Expression pattern matching.

-matchvar varName
(Tcl 8.5+) Used with -regexp, to specify the variable name to store the list of the matches
found by the regular expression engine. List args are same as the results stored to matchVar
and subMatchVars in regexp command. Will be set to empty list for default case.

-indexvar varName
(Tcl 8.5+) Used with -regexp, to specify the variable name to store the list of indices (same
form as regexp -indicies) referring to matching substrings found by the regular expression
engine (see -matchvar).Will be set to empty list for default case.

switch ?options? ?--? string
{pattern1 body1 ?pattern2
body2 ...?}

Same as above except patterns and bodies are evaluated as a concatenated list of all patterns
and commands with no command or variable substitutions performed.

while {test} {body} As long as expression test evaluates to true, evaluate Tcl command string body. If strings
are used as operands in the expression, they must be quoted or in braces. 

2.05 Dictionary
Dictionaries are values that contain an efficient (but not order-preserving) mapping from arbitrary keys to arbitrary values.
They have a textual format that is exactly that of any list with an even number of elements (a.k.a. keyed list), with each
mapping in the dictionary being represented as two items in the list. In the commands below, dict is the contents of a
dictionary (variable substitution, etc.) and dictName is the name of a dictionary variable.



Command Description 

dict append dictName
key ?string ...? 

Appends string or strings to key’s value in dictionary dictName. Non-existent keys are treated
as {}. 

dict create ?key value
...? 

Returns a new dictionary that contains each of the specified key and value mappings.

dict exists dict key ?key
...? 

Returns 1 if dict contains key (or path of keys through a set of nested dictionaries) , or 0 if it
does not.

dict filter dict filterType
arg ?arg ...? 

Returns a new dictionary that only contains the key/value pairs that match filterType in dict.
Valid filterTypes are:

key pattern Include elements where the key matches pattern using Pattern Globbing. 

script {keyVar
valueVar} script 

Include elements where the result of evaluating script is 1. Filtering is performed by looping
through each dict element and setting keyVar to the key and valueVar to the value then
evaluating script.If script returns TCL_BREAK, no further key/value pairs are checked or
included. TCL_CONTINUE is equivalent to a false result.

value pattern Include elements where the value matches pattern using Pattern Globbing. 

dict for {keyVar
valueVar}dict body 

Loop through each dict element and set keyVar to the key and valueVar to the value then
evaluating body. If body returns TCL_BREAK, no further key/value pairs will be iterated over. 
TCL_CONTINUE is equivalent to TCL_OK. 

dict get dict ?key ...? 
Returns the value for key (or path of keys through a set of nested dictionaries) in dict. Without
key, a list of all key/value pairs in dict is returned. Non-existant keys return an error.

dict incr dictName key
?increment? 

Increments the value of key by value (defaults to 1) in dictionary dictName.Non-existent keys
are treated as if they map to 0. An error is returned if key’s value is not an integer.

dict info dict Returns implementation specific info about dict.

dict keys dict ?pattern? 
Returns a list of all keys in dict matching pattern using Pattern Globbing. The keys are in an
arbitrary order. Without pattern, all keys are returned in the same arbitrary order as dict values.

dict lappend dictName
key ?value ...? 

Appends each value to key’s list value in dictionary dictName.Non-existent keys are treated as
if they map to an empty list. An error is returned if key’s value can not be represented as a list.

dict merge ?dict ...? 
Returns a dictionary containing the contents of all dict’s. For duplicate keys, only the value
from the last dictionary with key is used.

dict remove dict ?key
...? 

Returns a dictionary without keys.

dict replace dict ?key
value ...? 

Returns a dictionary that adds to or replaces each key and value pair in dict.

dict set dictName key
?key ...? value 

Sets (add or replace) the key (or path of keys through a set of nested dictionaries) in dictionary 
dictName with value.

dict size dict Returns the number of key/value mappings in dict. 

dict unset dictName key
?key ...? 

Unsets (removes) the key (or path of keys through a set of nested dictionaries) in dictionary 
dictName. At least one key must be specified, but the last key on the key-path need not exist.

dict update dictName
key varName ?key
varName ...? body 

Map each varName to key then evaluate and return the result of body. If a key does not exist,
then varName is unset.When done evaluating body, any changes made to the varNames are
reflected in dictionary dictName.

dict values dict ?pattern? 
Returns a list of all values in dict matching pattern using Pattern Globbing. The values are in an
arbitrary order. Without pattern, all values are returned in the same arbitrary order as dict keys.

dict with dictName ?key
...? body 

Map each key in dictionary dictName (or chain of nested dictionaries if one or more keys are
used) to a variable with the same name then evaluate and return the result of body. When done
evaluating body, any changes made to the variables are reflected in dictionary dictName.

2.06 Encodings



Command Description 

encoding convertfrom 
?encoding? data

(Tcl 8.1+) Convert data to Unicode from the specified encoding. Uses current system
encoding if not specified.

encoding convertto ?encoding? 
string

(Tcl 8.1+) Convert string from Unicode to the specified encoding. Uses current system
encoding if not specified.

encoding names (Tcl 8.1+) Return list of all available encodings.

encoding system ?encoding? (Tcl 8.1+) Set the system encoding to encoding. Returns current encoding if encoding
is not specified.

Common Encodings
Type: Example Encoding Names:

Single Byte: ascii cp1252(MS Windows) iso8859-1 symbol utf-8 

Double Byte: unicode big5 (chinese) 

Variable Byte: shiftjis euc-jp

3 or more bytes: Invalid

2.07 Event Loop Handlers
Command Description 

after ms Sleep for ms milliseconds. Blocks during sleep.

after ms?arg1
arg2 ...?

Arrange for command (concat of args) to be run after ms milliseconds have passed as an event handler.
Returns the ID of the event handler created. Does not block. 

after cancel ID Cancel previous after command with ID.

after cancel 
arg1 arg2 ...

Cancel previous after command matching args. 

after idle ?arg1
arg2 ...?

Arrange for command (concat of args) to be evaluated later as an idle callback (TK is idle). Returns the
ID of the event handler created. Do not call another after idle from an after idle callback. Use after 0 
instead.

after info ?ID? Returns information on event handler ID. With no ID, returns a list of all existing event handler IDs.
Each list entry contains two elements consisting of the script and event handler type. 

tkwait  variable 
varName

(Tk only) Wait for global variable varName to be modified before proceeding. Does not block while
waiting, but nested tkwaits must complete before outer wait can complete.

tkwait  visibility  
window

(Tk only) Waits for a change in the visibility state of window before proceeding. Can be used to wait for
a window to be created before taking action. Does not block while waiting, but nested tkwaits must
complete before outer wait can complete. 

tkwait  window 
window

(Tk only) Waits for window to be destroyed before proceeding. Can be used to wait for a dialog to be
closed before taking action. Does not block while waiting, but nested tkwaits must complete before
outer wait can complete. 

update 
?idletasks?

Handle pending events including idle callbacks. If idletasks is specified, only those operations normally
deferred (idle callbacks, display updates, and window layout calcs) until the idle state are processed.

vwait varName Enter Tcl event loop until global or fully qualified namespace variable or array varName is modified.
Will block if no events are ready and nested vwaits must complete before outer wait can complete. 



2.08 File Attributes
Command Description 

file atime 
fileName?time?

Returns the time that fileName was last accessed as seconds since system epoch time. In Tcl 8.3+, 
time sets last accessed time. On Windows, FAT file systems do not support access time. 

file attributes 
fileName ?option?
?option value? ...

Sets platform-specific attribute option to value for fileName. Without value, returns current value. 
Without option, returns all options and values. Valid options are:

-archive boolean (MS Windows) Archive file

-creator type (Mac, Mac OS X (8.5+)) Creator type 

-group name (UNIX) Group Name. Group ID can be used for set, but only names are returned. 

-hidden boolean (Mac, Mac OS X (8.5+), MS Windows) Hidden file 

-longname filename (MS Windows) Filename, cannot be set 

-owner name (UNIX) Owner name. Owner ID can be used for set, but only names are returned. 

-permissions code

(UNIX) Permissions in octal format. Tcl 8.3+ adds limited support for symbolic attributes like
chmod or an ls style string of the form rwxrwxrwx (must be 9 characters). Symbolic attribitutes
syntax is: [ugoa][+-=][rwxst],?...?  where the comma separates multiple attributes.

Field File Directory

User,
Group, 
Others

r = view file contents, w =
modify file contents, x = execute 
file

r = view dir contents, w = modify dir contents, x =
view dir contents and access dir’s files

Set UID
set user to file’s owner at 
runtime
(s if x, S if no x)

Set GID
Set group to file’s group at 
runtime
(s if x, S if no x)

All files created in dir will inherit the group of the 
dir

Sticky

(obsolete) File should "stick" in
memory after it is finished 
executing
(t if x, T if no x)

(system dependent) User can create/modify files
in dir with write access, but can only delete files
they own.

-readonly boolean (Mac, Mac OS X (8.5+), BSD UNIX, MS Windows) Read-only or UNIX user immutable flag 

-rsrclength length (Tcl 8.5+ Mac. Mac OS X) Length of the resource fork of a file, can only be set to 0 

-shortname 
filename  

(MS Windows) Filename, cannot be set 

-system boolean (MS Windows) System file

-type type (Mac, Mac OS X (8.5+)) Finder type 

file channels 
?pattern?

(Tcl 8.3+) Returns a list of all open I/O channels (files, sockets, stdio, etc.) or those matching 
pattern using Pattern Globbing.

file copy ?-force? 
?--? source target

Copies source file or directory to target . Will not overwrite existing files unless -force is
specified. In Tcl 8.5+, will copy finder attributes.

file copy ?-force? 
?--? source ?source
...? targetDir

Copies each source file or directory to targetDir directory. If source is a directory, all files in
source will be recursively copied to targetDir. Will not overwrite existing files unless -force is
specified. Will stop at first error. Invalid operations are: overwrite non-empty directory, overwrite
directory with file, or overwrite file with directory.  

file delete ?-force ? 
?--? fileName
?fileName ...?

Removes given files or directories. Use -force to remove non-empty directories. For symbolic
links, only the link will be deleted. Deleting a non-existent file is not considered an error. Args are
processed in the order specified, halting at the first error, if any.



file dirname 
fileName

Returns directory path of fileName. 

file executable 
fileName

Returns 1 if fileName is executable by user, 0 if not. 

file exists fileName Returns 1 if fileName exists (and user can read its directory), 0 if not. 

file extension 
fileName

Returns all characters in fileName after and including the last dot. 

file isdirectory 
fileName

Returns 1 if fileName is a directory, 0 if not. 

file isfile fileName Returns 1 if fileName is a regular file, 0 if not. 

file join  name ?name 
...?

Joins file names using the correct path separator for the current platform. 

file link  ?-options?
linkName ?target?

(Tcl 8.4+) Creates a link from linkName to target. Returns link filename without target. Options
are -symbolic or -hard.

file lstat fileName 
varName

Same as file stat except if fileName is a link, the status of the link is returned. 

file mkdir  dirName
?dirName ...?

Creates given directories with any needed parent directories. Trying to overwrite an existing file
with a directory will result in an error. Args are processed in the order specified, halting at the first
error, if any. 

file mtime fileName 
?time?

Returns the time that fileName was last modified as seconds since system epoch time. In Tcl 8.3+, 
time option sets last modified time. 

file nativename 
fileName

Returns the platform-specific name of fileName . 

file normalize 
fileName

(Tcl 8.4+) Returns a unique normalized (".." and "." are removed, symbolic links removed from
dirname but not tail) file-system absolute path representation of fileName .

file owned fileName Returns 1 if fileName owned by the user, 0 if not. 

file pathtype 
fileName

Returns path type of fileName: absolute (specific file on a specific volume), relative (relative to
the current working directory), or volumerelative (relative to the current working directory on a
specified volume or specific file on the current working volume).

file readable 
fileName

Returns 1 if fileName is readable by user, 0 if not. 

file readlink  
fileName

Returns target filename of symbolic link given by fileName or an error if fileName is not a link or
can not be read. 

file rename ?-force ? 
?--? source target

Renames source file or directory to target, moving it if the target pathname specifies a name in
another directory. The -force option forces overwriting of existing files. 

file rename ?-force ? 
?--? source ?source
...? targetDir

Moves each source file or directory to targetDir directory.  Will not overwrite existing files unless 
-force is specified. Trying to overwrite a non-empty directory, overwrite a directory with a file, or
a file with a directory will all result in errors. Args are processed in the order specified, halting at
the first error, if any. 

file rootname 
fileName

Returns all the characters in fileName up to but not including last dot ("."). 

file separator 
?fileName?

(Tcl 8.4+) Without arg returns the char used to separate path segments for native files on this
platform. With arg does same for file system fileName is on.

file size fileName Returns size of fileName in bytes. 

file split fileName Returns list whose elements are the path components of fileName. 

file stat fileName 
varName

Place results of stat kernel call on fileName in array varName with elements atime (last accessed
time), ctime (properties last updated time), dev (device),gid (group ID), ino (inode), mode 
(permissions),mtime (last modified time), nlink  (number of hard links), size (total size in 
bytes),type (device type), and uid (user ID). All are decimal numbers except type, which is the
same as file type. For links, returns status on linked to file. 

file system fileName (Tcl 8.4+) Returns a two element list for fileName with the name of file system and nature or type.



file tail  fileName Return all characters in fileName after last directory separator. 

file type fileName Returns type of fileName. Possible values are file, directory , characterSpecial, blockSpecial,fifo , 
link , or socket. 

file volumes Returns list of absolute paths of mounted volumes on system. Returns just "/" on UNIX, list of
local drives on Windows, and list of local and network drives on MacOS. 

file writable  
fileName

Returns 1 if fileName is writable by user, 0 if not. 

2.09 History
When specifying an event to the history command, event may be either: 

1.  A number: if positive, it refers to the event with that number (all events are numbered starting at 1). If the number is
negative, it selects an event relative to the current event (-1 refers to the previous event, -2 to the one before that, and
so on). Event 0 refers to the current event. 

2.  A string: selects the most recent event that matches the string. An event is considered to match the string either if the
string is the same as the first characters of the event, or match pattern using Pattern Globbing.

Command Description 

history Same as history info.

history add command ?exec? Adds command to history list, optionally executing it. 

history change newValue 
?event?

Replaces value of event (default is current) in history with newValue. 

history clear Erase the history list and reset event numbers. 

history event ?event? Returns value of event (default is -1) in history. 

history info ?count? Returns event number and contents of the last count events. Without count all events are 
returned. 

history keep ?count? Set number of events to retain in history to count. Without count, returns current limit. 

history nextId Returns number for next event to be recorded in history. 

history redo ?event? Re-evaluates event (default is -1). 

Command Line Shortcuts

Syntax Description

!! Repeats the previous command

!n
Repeats command number n. If n is negative, it counts backward from the current command. The previous
command is -1.

!prefix Repeat the last command that starts with prefix.

!pattern Repeat the last command that matches pattern. 

^old^new Replace all occurances of ols with new in the last command.



2.10 Input/Output 
By default channelIDs stdin, stdout, and stderr are open. These channels are not available on all platforms since they are
not supported by the console.

Command Description 

cd ?dirName? Change working directory to home directory or dirName if specified.

close channelId Close the specified channelId. Will wait for child process(es) to complete for blocking channels. Will
not return exit info for non-blocking channels.

eof channelID Returns 1 if an end-of-file has occurred on channelID, 0 if not.

exec 
?-keepnewline? 
?--? arg ?arg ...?

Execute argsas subprocesses in a shell pipeline. Returns results to stdout of the last command in the
pipeline unless redirected. Returns the error number, error message, stderr output (unless redirected),
and sets errorCode (-errorcode return option for Tcl 8.5+) if a pipeline process is killed, suspended,
exits abnormally, or writes to stderr without redirection. Also cleans up any pending children
(detached PIDs). To retain the final newline char, use -keepnewline. Default stdin, stdout, and stderr
are same as calling application. Performs "~" but not glob substitutions. The following args are used
to redirect the I/O:

Redirection Description Redirection Description

| Pipe (stdout) >> fileName Append stdout to file 

|& Pipe (stdout and stderr) 2>> fileName Append stderr to file 

< fileName Stdin from file >>& fileName Append stdout and stderr to file 

<@ 
channelID

Stdin from open file
(UNIX only)

>@channelID Stdout to open file (UNIX only)

<< value Pass value to stdin 2>@channelID Stderr to open file (UNIX only) 

> fileName Stdout to file >&@channelID Stdout and stderr to open file (UNIX 
only) 

2> fileName Stderr to file 2>@1 (Tcl 8.4.7+) Redirects stderr to stdout

>&  fileName Stdout and stderr to file & Run in background. Returns list of
pipeline PIDs. 

// or \\ Refers to a network path

fblocked 
channelID

Returns 1 if channelID does not have data available for reading, or 0 if it does.

fconfigure 
channelID ?option
value ...? ?option
value ...?

Sets and retrieves options for channelID. Sockets are read-only. Options are:



Option: Type: Description:

-blocking 
boolean

all Whether I/O can block process. Default is to block. For MS Windows prior to
Tcl 8.4, serial I/O always blocks.

-buffering  arg all Arg is full , line, or none for buffer output. Default is full, except for channels
that connect to terminal-like devices where its line. stdin and stdout are initially
set to line, and stderr is set to none. 

-buffersize size all Size of buffer in bytes. Range is 10 to 1,000,000 bytes. Default is 4096 bytes.

-encoding name all (Tcl 8.1+) Channel encoding. See Encodings. (ASCII, UNICODE, UTF-8,
binary, etc.)

-eofchar char all Sets read EOF marker. \x1a for DOS.

-eofchar {inChar 
outChar}

all Sets read and write EOF marker. No args returns a two element list with the
current markers.

-error all (Tcl 8.0.5+) Returns last POSIX error message associated with channel or empty
string if none.

-translation mode all Sets EOL marker. Modes are auto (default is native newline), binary  (no EOL), 
cr, crlf , and lf . Using binary implies -encoding binary.

-translation 
{inMode 
outMode}

all Sets read and write EOLmarkers. Modes are auto (default is native newline), 
binary  (no EOL), cr, crlf , and lf . No args returns a two element list of in and out 
modes.

-peername socket For client or accepted sockets, returns a three element list with address, host
name, and port number to which the peer socket is connected or bound

-sockname socket Returns a three element list with address, host name, and port number for the 
socket.

-handshake type serial (Tcl 8.4+ UNIX and MS Windows only) Setup automatic handshake control
(none, rtscts, xonxoff, dtrdsr (MS Windows only)). Cannot be queried.

-lasterror serial (Tcl 8.3+ MS Windows) Returns a list of error details. Can only be queried. 

-mode baud,
parity, data, stop

serial Set baud rate, parity (n, o, e, m, s), data bits (5 to 8), and stop bits (1 or 2) of 
channel.

-pollinterval  
msec

serial (Tcl 8.2+ Windows) Max time between polling for fileevents. Default is 10 
msec.

-queue serial (Tcl 8.4+ UNIX and MS Windows only) Returns a two element list of bytes in
input and output buffers. Can only be queried. 

-sysbuffer inSize serial (Tcl 8.4+ MS Windows) Change size of serial channel buffer. Default is 4096 
bytes.

-sysbuffer {inSize 
outSize}

serial
(Tcl 8.4+ MS Windows) Change size of input and output serial channel buffers.
Default is 4096 bytes. 

-timeout msec serial (Tcl 8.4+ UNIX and MS Windows only) Set the timeout for blocking reads only.
For Unix systems the granularity is 100 milliseconds.

-ttycontrol  
{signal boolean
signal boolean ...}

serial (Tcl 8.4+ UNIX and MS Windows only) Setup the handshake output lines or
send BREAK. Cannot be queried. 

-ttystatus serial (Tcl 8.4+ UNIX and MS Windows only) Returns a list of modem status and
handshake input signals as a list of signal,value pairs.Can only be queried. 

-xchar {xonChar 
xoffChar}

serial (Tcl 8.4+ UNIX and MS Windows only) Query or change the software
handshake chars. Default should be DC1 (0x11) (XON) and DC3 (0x13) 
(XOFF).

fcopy inChID 
outChID ?-size 
size? ?-command 
callback ? 

Copy data from inChID to outChID until eof or size bytes are transferred. With -command, the copy
runs in background and calls callback with args of bytes copied and an error message, if applicable,
when done. Blocks without -command. In Tcl 8.4+, respects channel encodings.

fileevent 
channelID option 
?script?

Create handler to evaluate script at global level when channelID becomes option (readable or 
writable) . Replaces the existing handler if present. The handler is deleted if script is an empty string,
when the channelID is closed, or if the handler returns an error (bgerror  will be called). Script needs
to account for eof. Returns current script if script is not specified. 



flush channelID Flushes any output that has been buffered for channelID.

gets channelID 
?varName?

Read the next line from channelID, discard the newline character, place the result in varName, and
return the number of characters or -1 if there was an error. Without varName, the result is returned.
Will return an empty string for non-blocking channels if no input is available.

glob ?option? ?--?
pattern ?pattern 
...?

Returns a list of all files in current directory that match any of the given csh-style glob patterns. See 
Pattern Globbing for expressions. Options are:

-directory  
directory

(Tcl 8.3+) Search for files in directory. Can not be used with -path .

-join (Tcl 8.3+) Join pattern args into a single pattern with directory separators.

-nocomplain Allows an empty list to be returned without error.

-path pathPrefix (Tcl 8.3+) Search for files starting with pathPrefix. Can not be used with -directory .

-tails (Tcl 8.4+) Only return filename and not path when used with -path or -directory  .

-types typeList (Tcl 8.3+) Only list items which match types in typeList. The first form shows matches of one or
more of the following types: b (block special file), c (character special file), d (directory), f (plain
file), l (symbolic link), p (named pipe), or s (socket). The second form only shows matches of all the
specified types. The available types are:  r  (read), w (write), x (execute), readonly, hidden, or the
MacOS type. The second form may also use types from the first form.

open fileName
?access? ?perms?

Opens a file, serial port, or command pipeline and returns its channel ID. If the first char of fileName
is "|" then fileName is opened as a pipeline process with the same redirection options as exec. If 
filename is a serial port, then the specified port is used (/dev/ttyX (X=a or b) on UNIX and com#:
(#=1 to 4) on Windows). If a new file is created, its permission are set to perms (default is 0666) in
conjunction with processes umask. A pipeline with w access writes to stdout unless redirected. A
pipeline with r access reads from stdin unless redirected. The access options are:

UNIX Description POSIX Description 

r Read only (default). FileName
must exist.

RDONLY Read only

RDWR Read/write. 

r+ Read/write. FileName must 
exist.

WRONLY Write only. 

APPEND Set access position to end for each write. 

w Write only. Truncate  
fileName, if exists.

CREAT Create fileName if it doesn’t exist. 

EXCL
Used with CREAT , fileName must not 
exist. 

w+ Read/write. Truncate 
fileName, if exists.

NOCTTY
Prevent terminal device from being the
controlling terminal. 

a Write only. Set access
position to end.

NONBLOCK Do not block during opening. 

a+ Read/write. Set access
position to end.

TRUNC TruncatefileName if it exists. 

pid ?channelID? Return a list of process IDs, in order, for pipeline process channelID. Without channelID, returns
process ID of interpreter process.

puts ?-nonewline 
? ?channelID? 
string

Write string to channelID (default is stdout). Omit newline with -nonewline. Newline is based on 
fconfigure -translation for channelID. 

pwd Returns the current working directory. Guaranteed to be the unique normalized string representation
of the path in Tcl 8.4+.

read ?-nonewline? 
?channelID?

Read all remaining data from channelID, optionally discarding last character if it is a newline.

read channelID 
numChars

Read numChars (byte size depends on encoding) or remaining if less available from channelID. For
serial ports, if numChars is not specified will read until EOF.

seek channelID
offset ?origin?

Change current access position for channelID to offset bytes from origin. Origin options are: start
(default), current , or end.



socket ?option ...?
host port

Open a read/write client-side TCP socket to server host on port and returns the channel ID. The local 
host can be specified with localhost. Options are:

-async Make connection asynchronous.

-myaddr addr Set network address of client (if multiple available). Default is system specific.

-myport  port Set connection port of client (if different from server). Default is random port.

socket -server 
command ?option? 
port

Open server TCP socket on port. For each connection made, invoke command with three args: the
channel, client address, and client port number. If port is 0, the OS will use an unassigned port. 

-myaddr  addr Sets the network address of server to addr.

tell channelID Returns current access position for channelID in bytes.

2.11 Interpreter Information



Command Description 

info args procName Returns list with names of arguments to procedure procName. 

info body procName Returns the body of procedure procName. 

info cmdcount Returns the total number of commands that have been invoked in this interpeter. 

info commands ?pattern? Returns list of all Tcl commands (built-ins and procs) in current namespace or those
matching pattern using Pattern Globbing. 

info complete command Returns 1 if command is a complete Tcl command, 0 if not. Complete means having no
unclosed quotes, braces, brackets or array element names. 

info default procName arg 
varName

Returns 1 if procedure procName has a default for argument arg and places the value in
variable varName. Returns 0 if there is no default. 

info exists varName Returns 1 if the variable varName exists in the current context, 0 if not. 

info functions ?pattern? (Tcl 8.4+) Returns list of all math functions or those matching pattern using Pattern 
Globbing . 

info globals ?pattern? Returns list of all global variables or those matching pattern using Pattern Globbing. 

info hostname Returns name of computer on which interpreter was invoked. 

info level ?number? Returns the invoking procedure stack level or if number is specified, a list of the name and
args of procedure call at level number on the stack. info level 0 returns the curent proc name
and args.

info library Returns name of library directory where standard Tcl scripts are stored. Same as variable 
TCL_LIBRARY . 

info loaded ?interp? Returns list of all packages loaded or just those in interp if specified. Each list element
consists of the source filename and package name. 

info locals ?pattern? Returns list of all local variables or those matching pattern using Pattern Globbing. 

info nameofexecutable Returns full pathname of binary from which the application was invoked. 

info patchlevel Returns current patch level for Tcl. Same as variable tcl_patchLevel. 

info procs ?pattern? Returns list of all Tcl procedures in current namespace or those matching pattern using 
Pattern Globbing. 

info script ?filename? Returns name of Tcl script currently being evaluated (by source), if any. In Tcl 8.4+, if 
filename is specified, the return value of info script is set to filename. 

info sharedlibextension Returns extension used by platform for shared objects. 

info tclversion Returns version number of Tcl in major.minor form. Same as variable tcl_version. 

info vars ?pattern? Returns list of all currently-visible variables or those matching pattern using Pattern 
Globbing. 

memory option ?arg arg 
...?

(Tcl 8.4+) Allows control of the Tcl memory debugging capabilities. Tcl must be compiled
with memory debugging enabled. Options are:

active file Output a list of all currently allocated memory (with associated tags) to file.

break_on_malloc count After count allocations, Tcl will output a break message and SIGINT to the C debugger.

info Reurns the total number of allocations and frees, current packets allocated, current bytes
allocated, and the maximum number of packets and bytes allocated.

init fn Turn on or off the pre-initialization of all allocated memory with bogus bytes. 

onexit file Output a list of all currently allocated memory (with associated tags)to file at Tcl exit.

tag string Sets the tag value to string for subsequent calls to ckalloc.

trace fn Turn on or off the output to stderr of memory tracing info. Each ckalloc or ckfree outputs: fn,
address, size, C filename of calling procedure, and line in file.

trace_on_at_malloc count After count allocations, Tcl will enable memory tracing. 

validate fn Turn on or off memory validation (if the ckalloc or free overwrite another allocated portion
of memory). 



2.12 Interpreters
Command Description 

interp alias srcPath srcCmd Returns list whose elements are the targetCmd and args associated with the alias 
srcCmd in interpreter srcPath. 

interp alias srcPath srcCmd {} Deletes the alias srcCmd in interpreter srcPath. 

interp alias srcPath srcCmd
targetPath targetCmd ?arg ...?

Creates an alias srcCmd in interpreter srcPath which when invoked will run 
targetCmd and args in the interpreter targetPath . In targetPath , the current
interpeter is {}. 

interp aliases ?path? Returns a list of all alias source commands defined in the interpreter identified by 
path . 

interp bgerror path ?cmdPrefix?

(Tcl 8.5+) Sets the command (in list format) to handle background errors in the path 
interp. Without cmdPrefix, the currently registered command, if any, or the
background error handler (defined by bgerror), will be returned. When an error
occurs in path interp and it cannot be reported up the procedure stack, the returned
error message and dictionary of return options (see catch) will be appended to
cmdPrefix and the new command will be evaluated by the Tcl Interpreter.

interp create ?-safe ? ?--? ?path? Creates a slave interpreter (optionally safe) identified by path with a slave name
obtained by removing the last component from path . 

interp delete ?path ...? Deletes the interpreters defined by the path args and all their slave interpreters. 

interp eval path arg ?arg ...? Evalutes concatenation of arg s as a command in interpreter path . 

interp exists path Returns 1 if interpreter path exists, 0 if not. 

interp expose path hiddenCmd 
?exposedCmdName?

Make hiddenCmd in interppath exposed (optionally as exposedCmd Name). 

interp hide path exposedCmdName 
?hiddenCmdName?

Make exposedCmd in interppath hidden (optionally as hiddenCmd Name). 

interp hidden path Returns list of hidden commands in interp path. 

interp invokehidden path ?options?
?--? hiddenCmdName ?arg ...?

Invokes hiddenCmdName with specified args in interp path at the current call frame
and can access local variables in that and outer call frames. 

-global Invokes hidden command at the global level in the target interpreter. Overrides 
-namespace.

-namespace namespace (Tcl 8.5+) Invokes hidden command in the specified namespace in the target 
interpreter

interp limit path limitType ?option?
?value ...?

(Tcl 8.5+) Set or query the resource limit limitType for the interp path. Without
value, the current value is returned. Without option, the current config of limitType
is returned. The two kinds of limitTypes, command and time. Command restricts
the total the total number of Tcl commands that may be executed by an interpreter
(using info cmdcount) and time limits the total execution time (using time) of the
interpreter. When the limit for an interpreter is exceeded, the -command callback is
evaluated, if defined. If the limit is still in force, an error is generated to the
interpreter’s invoking command. Valid options are:



-command cmd ?arg ...?

Specifis the Tcl script to eval in the global namespace of the interpreter reading and
writing the option when the particular limit in the limited interpreter is exceeded.
The callback may modify the limit to allow the interpreter to continue executing. If
the callback generates an error, it is reported through the background error
mechansism (see interp bgerror or bgerror)

-granularity

-milliseconds

-seconds

-value

interp issafe ?path? Returns 1 if interpreter path is safe, 0 if not. 

interp marktrusted  ?path? Marks interp path as trusted. Does not expose the hidden commands. 

interp recursionlimit  path 
?newlimit?

(Tcl 8.4+) Returns the max allowable nesting depth for the interpreter path . If 
newlimit is defined, the recursion limit is set to it.

interp share srcPath channelID 
destPath

Sets the I/O channel channelID in interpreter srcPath to be shared with interpreter 
destPath . 

interp slaves ?path? Returns list of names of all slave interpreters of interpreter path. If path is omitted,
the invoking interpreter is used. 

interp target path alias Returns list describing target interpreter of alias in interpreter path. 

interp transfer  srcPath channelID 
destPath

Moves I/O channel channelID from interpreter srcPath to destPath. 

::safe::interpCreate ?slave? 
?option arg...?

Creates a safe interpreter, installs the specified aliases, and initializes the
auto-loading and package mechanism. Without slave, returns the interpreter name.

-accessPath directoryList Sets the list of directories from which the safe interpreter can source and load files.
For the default option or if set to an empty list, the safe interpreter will use the same
directories as its master for auto-loading.

-statics boolean (Tcl 8.0p1+) Specifies if the safe interpreter will be allowed to load statically linked
packages. Default is true.

-noStatics Convenience shortcut for -statics false.
-nested boolean (Tcl 8.0p1+) Specifies if the safe interpreter will be allowed to load packages into

its own sub-interpreters. Default is false.

-nestedLoadOk convenience shortcut for -nested true.
-deleteHook script Evaluate script in the master just before deleting a safe interpreter. Passes name of

slave interpreter as arg to script. For the default option or if set to an empty string,
the current script is removed for current safe interpreter.

::safe::interpInit  slave ?option 
arg...?

Similar to interpCreate except it that does not create the safe interpreter. slave
must have been created by some other means, like interp create -safe. Uses same
options as ::safe::interpCreate.

::safe::interpConfigure  slaveoption
arg ...?

?

Sets option to specified arg for interpreter slave. Without args, returns setting 
foroption. Without options, returns current interpreter settings. Uses same options
as ::safe::interpCreate.

::safe::interpDelete slave Deletes the safe interpreter slave .

::safe::interpAddToAccessPath 
slave directory

Adds directory to the virtual path maintained for the safe interpreter slave (if not
already in the path), and returns the token that can be used in the safe interpreter to
obtain access to files in that directory.

::safe::interpFindInAccessPath 
slave directory

This command finds and returns the token for the real directory directory in the safe
interpreter’s current virtual access path. It generates an error if the directory is not 
found.

::safe::loadTk slave ?-use 
windowId? ?-display displayName ?

Load Tk into a safe interpreter.WindowId identifies the window on displayName to
contain the "." window of the interpreter.

::safe::setLogCmd ?cmd arg...? Installs a script that will be called when interesting life cycle events occur for a safe
interpreter. Calls script with text message arg added to describe the event. If cmd is
set to an emptry string, the currentlt installed script is removed and logging is
turned off. Without cmd and args, returns currently installed script.



Slave Interpreters
For each slave interpreter created with the interp command, a new Tcl command is created in the master interpreter with
the same name as the new interpreter. This command may be used to invoke various operations on the interpreter. The
following commands are used like interp, but without the srcPath or path (defaults to the slave itself) and the targetPath
arguments (defaults to the slave’s master).

alias bgerror expose hidden issafe marktrusted 

aliases eval hide invokehidden limit recursionlimit 

Safe Interpreter Exposed Commands

after eval interp package string

append expr join pid subst

array fblocked lappend proc switch

binary fcopy lassign puts tell
break fileevent lindex read time

case flush linsert regexp trace

catch for list regsub unset

clock foreach llength rename update

close format lrange return up level
concat gets lrepeat scan upvar

continue global lreplace seek variable

dict if lsearch set vwait

eof incr lsort split while

error info namespace

Safe Interpreter Hidden Commands

cd exec fconfigure glob open socket

encoding exit file load pwd source 

Tcl Library Commands Not Included in a Safe Interpreter

auto_exec_ok auto_load auto_qualify

auto_import auto_load_index unknown 

Auto Loaded Commands Not Included in a Safe Interpreter
Without the unknown command, the default loading facilities are not available. The following commands are normally 
autoloaded:



auto_mkindex ::safe::interpAddToAccessPath tcl_endOfWord

auto_mkindex_old ::safe::interpCreate tcl_findLibrary

auto_reset ::safe::interpConfigure tcl_startOfNextWord

history ::safe::interpDelete tcl_startOfPreviousWord

parray ::safe::interpFindInAccessPath tcl_wordBreakAfter

pkg_mkIndex ::safe::interpInit tcl_wordBreakBefore

::pkg::create ::safe::setLogC

Safe Interpreter Aliases

Command Description

source 
fileName

Sources fileName into the safe interpreter. Only files in directories included in the virtual path for the
safe interpreter can be used. Requires the safe interpreter to use one of the token names in its virtual path
to denote the directory in which the file to be sourced can be found.

load fileName Loads a shared object file fileName into the safe interpreter. The filename must contain a token name
mentioned in the virtual path for the safe interpreter for it to be found successfully. The shared object file
must contain a safe entry point.

file ?subCmd
args ...?

Provides access to a safe subset of the subcommands of the file command. Only dirname, join  
,extension,root,tail ,pathname, and split subcommands are accessible.

encoding 
?subCmd args 
...?

Provides access to a safe subset of the encodingsubcommands. The system encoding cannot be changed,
but all other subcommands are accessible.

exit The calling interpreter is deleted and its computation is stopped, but the Tcl process in which this
interpreter exists is not terminated.

2.13 Lists
A special case of string which consists of a series of elements which can be indexed like an array starting with 0. Elements
may contain strings, numbers, etc. If spaces or other special characters are used they must grouped within braces or use
backslash substitution as required. Elements may consist of nested sublists, which can contain more sub-lists, etc. to any
depth. Common definitions for strings as lists:

Definition Input Criteria Result

Well Formed List string s string equal "{ $s}" [list  $s] returns 1

Canonical List well formed list s string equal $s [split$s] returns 1

Nested List list [list 1a 1b] [list 2a 2b] ...

The list arguments of index, first, and last can be replaced with end to use the index of the last element in list . For the list
commands below, list is the contents of the list (use variable substitution, i.e. $listName) and listName is the name of the 
list.

Command Description 

concat ?arg arg 
...?

Returns concatenation of args into a single list while trimming leading and trailing spaces. Removes
one level of grouping before forming list. 

join  list 
?joinString?

Returns string created by joining all elements of list with joinString (default is space) separating each 
element. 

lappend 
listName ?value 
...?

Appends each value arg to the end of list listName. 



lassign list
varName
?varName ...?

(Tcl 8.5+) Assigns successive elements from list to the variables given by the varName args and
returns unassigned list elements. If ther are more var args then list elements, unused vars are set to {}.

lindex list ?index 
...?

Returns value of element at index in list. In Tcl 8.1.1+, index can be end-# (where # is an integer) for
the last element minus the specified number. In Tcl 8.4+, multiple indicies may be used (in list or
indivdual args format) for sub-lists (nested list) of list in highest to lowest depth order. Without index,
returns contents of list. Invalid indicies return {}.

linsert list index
element ?element 
...?

Returns new list by inserting elements at index in list. Inserts at beginning of list for index <= 0 and at
end of list for index of end or index > elements in list. In Tcl 8.1.1+, index can be end-# (where # is an
integer) for the last element minus the specified number. 

list ?arg arg ...? Returns new list formed by using each arg as an element. Does not alter grouping. Prior to Tcl 8.5, list
does not quote leading #’s in an eval safe manner. 

llength list Returns number of elements in list. 

lrange list first 
last

Returns new list consiting of list elements first through last, inclusive. If first <= 0 then 0 is used and if 
last > elements in list, then end is used. Returns empty list if first > last. In Tcl 8.1.1+, first and last
can be end-# (where # is an integer) for the last element minus the specified number. 

lrepeat number
element
?element  ...?

(Tcl 8.5+) Creates a list of elements repeated number of times where number is >= 0.

lreplace list first
last ?element ...?

Returns new list formed by replacing elements first through last in list with elements. If first <= 0 then
0 is used and if last > elements in list, then end is used. If first < last < 0, then new elements will be
prepended to the list. If first > last, new elements are inserted before first. Without element args,
elements between first and last are deleted. If list is empty, elements are added to the end of the list. In
Tcl 8.1.1+, first and last can be end-# (where # is an integer) for the last element minus the specified 
number. 

lsearch 
?options? list 
pattern

Returns index of first element in list that matches pattern (-1 for no match). Mutually exclusive options
where last specified is used: -exact, -glob, -regexp , and -sorted; -ascii, -dictionary, -integer , and 
-real; -increasing and -decreasing. Options are: 

-all (Tcl 8.4+) Returns list of all matching indices or all matching values if used with -inline. Returns
empty list if no matches are found.

-ascii (Tcl 8.4+) Compare to elements as ASCII strings (alphabetical, case sensitive). Used with -exact or 
-sorted.

-decreasing (Tcl 8.4+) Elements are in decreasing order. Used with -sorted.

-dictionary (Tcl 8.4+) Compare to elements using dictionary-style (alphabetical, case insensitive) comparisons.
Used with -exact or -sorted.

-exact The list element must contain exactly the same string as pattern.

-glob Compare to elements using Pattern Globbing. This is the default option.

-increasing (Tcl 8.4+) Elements are in increasing order. Used with -sorted.

-index indexList
(Tcl 8.5+) Treat list elements as sublists (nested lists) and only searches in the sub-element specified
by indexList in highest to lowest depth order.

-inline (Tcl 8.4+) Returns matching value instead of index or empty string if no match. If used with -all , a list
of all matched values is returned.

-integer (Tcl 8.4+) Compare to elements as integers (numeric). Used with -exact or -sorted.

-not (Tcl 8.4+) Negates match criteria. Index of first non-matching element will be returned.

-real (Tcl 8.4+) Compare to elements as floating point values. Used with -exact or -sorted.
-regexp Compare to elements using Regular Expression pattern matching. Prepend (?i) to exp for case 

insenstive.

-sorted (Tcl 8.4+) Specifies that the list elements are in sorted order, so use a more efficient search algorithm.
Default options are: -exact, -ascii, and -increasing . Can not be used with -all, -glob, -not or -regexp .

-start index (Tcl 8.4+) Start search at index .

-subindicies (Tcl 8.5+) Used with -index to return a listof subindicies for the matching element in highest to lowest
depth order.



lset listName
?index...? 
newValue

(TCL 8.4+) Replaces element at index in list listName with newValue and returns the new list. Without 
index replaces all of list with newValue. Index can be end-# (where # is an integer) for the last element
minus the specified number.Multiple indicies may be used (in list or indivdual args format) for
sub-lists (nested list) of list in highest to lowest depth order. An error is returned if index < 0 or index >
number of elements in list. 

lsort ?options? 
list

Returns new list formed by sorting list according to options:

-ascii Sort elements in ASCII order (alphabetical, case sensitive). (default)

-command cmd
arg arg

Use cmd to compare two args of elements where cmd returns an integer <, =, or > than 0 to denote
corresponding compare result.

-decreasing Sort elements in decreasing order.

-dictionary Sort elements using dictionary-style (alphabetical, case insensitive) order. Sorts numbers as integers
not chars, but in ascending absolute value order.

-increasing Sort elements in increasing order. (default)

-indices (Tcl 8.5+) Returns the indices of the given list’s elements in the order that they would have otherwise
been sorted.

-index indexList Treat list elements as sublists (nested lists) and sorts based on the element at indexList in the sub-list.
In Tcl 8.1.1+, indexList can be end-# (where # an integer) for the last element minus the specified
number. In Tcl 8.5+, indexList is a list of sub-indicies, in highest to lowest depth order, specifying the 

sub-elements to be used for the sort.
-integer Converts elements to integers and sorts in numeric order. Can not sort any number containing a

decimal point or exponent. Binary data is not allowed.

-real Converts elements to floating-point values and sorts in numeric order.

-unique (Tcl 8.3+) Retain only the last set of duplicate elements.

split string 
?splitChars?

Returns a list formed by splitting string at each character in splitChars (default is white-space [\t\n\r ]).
The splitChars will not be included in the new list. Empty list elements will be created when multiple 
splitChars appear next to each other or at the start or end of string. If splitChars is an empty string
each char in string will become a separate list element. 

2.14 Namespaces
Namespaces are used to partition a collection commands and variables from another collection so they don’t interfere with
each other. Namespace variables resemble global variables in Tcl. They exist outside of the procedures in a namespace but
can be accessed in a procedure via the variable command. Namespaces are denoted by namespace ::  variable where 
variable can be a nested namespace and variable such as namespace ::  namespace ::variable. The global namespace holds
all global variables and commands. The global namespace is "" (empty string) but is denoted by ::  .

Command Description 

auto_qualify cmd namespace(Tcl 8.0p1+) Computes a list of fully qualified names for cmd in namespace then the
global namespace.

namespace children 
?namespace? ?pattern?

Returns list of all child namespaces belonging to namespace (default is current) or match 
pattern using Pattern Globbing. 

namespace code script Returns a new script, that when evaluated will cause script to be evaluated in the current
(where namespace code was invoked) namespace. Useful for callbacks. Additional args
can be passed to script by appending to the new script when evaluated. 

namespace current Returns fully-qualified name of current namespace. 

namespace delete 
?namespace ...?

Each namespace is deleted along with any child namespaces, procedures, and variables. If
a procedure is currently executing in namespace, it will be deleted when the procedure 
returns. 

namespace ensemble create
?option value ...?

(Tcl 8.5+) Creates a new ensemble command linked to the current namespace, returning
the fully qualified name of the command created. Valid options are:



-command command 
?arg...?

Specifies name of ensemble command. Default is to create an
ensemble with exactly the same name as the linked namespace. 

-map dict
Specifies a dictionary to use for mapping from subcommand names to a list of prefix
words to use in place of the ensemble command and subcommand words. Default is to 
map from the local name of the subcommand to its fully-qualified name.

-prefixes boolean
Specifies whether the ensemble command recognizes unambiguous prefixes of its
subcommands (default) or only exact matches.

-subcommands list
Specifies valid ensemble subcommands. Default is to use the keys of the dictionary per the
-map option or the exported commands of the linked namespace at the time of the
invocation of the ensemble command.

-unknown command ?arg...?

Specifies the command to append unknown ensemble sub-commands and eval in the scope
of the attempted call. Default is to generate an error like Tcl_GetIndexFromObj. The
command must return either a list of command words to replace the ensemble command
and subcommand like -map, or an empty list. The latter will result in an attempt to eval the
ensemble sub-command again and if unsuccessful will generate an error like the default 
case.

namespace ensemble 
configure command ?option?
?value ...?

(Tcl 8.5+) Change the ensemble option to value. Without value, the current value is
returned. Without option, a list of all available options for the ensemble is returned. Valid
options are: 

-map dict
Specifies a dictionary to use for mapping from subcommand names to a list of prefix
words to use in place of the ensemble command and subcommand words. Default is to 
map from the local name of the subcommand to its fully-qualified name.

-namespace Returns the fully-qualified name of the namespace in which the ensemble was created. 

-prefixes boolean Specifies whether the ensemble command recognizes unambiguous prefixes of its
subcommands (default) or only exact matches.

-subcommands list
Specifies valid ensemble subcommands. Default is to use the keys of the dictionary per the
-map option or the exported commands of the linked namespace at the time of the
invocation of the ensemble command. 

-unknown command ?arg...?

Specifies the command to append unknown ensemble sub-commands and eval in the scope
of the attempted call. Default is to generate an error like Tcl_GetIndexFromObj. The
command must return either a list of command words to replace the ensemble command
and subcommand like -map, or an empty list. The latter will result in an attempt to eval the
ensemble sub-command again and if unsuccessful will generate an error like the default 
case. 

namespace ensembleexists 
command

(Tcl 8.5+) Returns 1 if command exists and is an ensemble, otherwise returns 0.

namespace eval namespace
arg ?arg ...?

Activates namespace and evaluates concatenation of args inside it. Counts as a level for 
uplevel and upvar. 

namespace exists namespace(Tcl 8.4+) Returns 1 if namespace is valid in current context, 0 if not.

namespace export ?-clear? 
?pattern...?

Appends commands matching pattern (without namepsace qualifiers)using Pattern 
Globbing to export list of current namespace. If -clear is given, the export list is first
emptied. Without any args, the current namespace’s export list is returned. 

namespace forget ?pattern
...? ?namespace::pattern ...?

Removes from current namespace any previously imported commands matching pattern
using Pattern Globbing or from exported namespace namespace. 

namespace import ?-force? 
?namespace::pattern...?

Imports into current namespace commands matching pattern using Pattern Globbing from 
namespace . The -force option allows replacing of existing commands. 

namespace inscope 
namespace listArg ?arg ...?

Activates namespace (which must already exist) and evaluates inside it the result of 
lappend listArg args. 

namespace origin command Returns fully-qualified name of original command that imported command refers to. 

namespace parent 
?namespace?

Returns fully-qualified name of parent namespace for namespace. Without namespace,
returns parent of current namespace. 

namespace qualifiers string Returns any leading namespace qualifiers for string. 

namespace tail string Returns the simple name (without leading namespace qualifiers) for string. 



namespace which 
?-command? 
?-variable?name

Returns fully-qualified name of the command (default) or variable (if -variable used) 
name in the current namespace. Will look in global namespace if not in current namespace.
Returns empty string if doesn’t exist. 

variable name ?value?
?name value ...?

Creates name variables in current namespace (if unqualified) initialized to value (default is
to leave undefined for new vars or current value for existing vars). Name can reference an
array but not an element in an array. In this case value should not be used. Used inside a
procedure but outside of an namespace eval, a local variable is created linked to the given
namespace variable. 

2.15 Packages
Packages are used to partition subroutines or entire programs into portable packages that can be used in other applications
or subroutines. Each package can contain a version in Major.Minor?.subreleases...? format where only versions with the
same major version are assumed to be compatible. Packages are indexed using the pkg_mkIndex command.



Command Description 

package forget package 
?package...?

Removes all info about packages from interpreter. 

package ifneeded package
version ?script?

Tells interpreter that evaluating script will provide version of package. Without script,
current script for version of package is returned or empty string if none. 

package names Returns list of all packages in the interpreter that are currently provided or have an 
ifneeded script available. 

package present ?-exact? 
package ?version?

(Tcl 8.1+) Same as package require except does not try to load package if not
already loaded.

package provide package 
?version?

Tells interpreter that version of package is now present. Without version, the currently
provided version of package is returned or empty string if none. 

package require ?-exact? 
package ?version?

Tells interpreter that version of package is needed. Only packages with versions equal
to or later than version (if provided) are acceptable, but must have same major
version. If -exact is specified, the exact version specified must be provided. Without 
version or -exact, any version is acceptable. Returns version number loaded. 

package unknown ?command? Specifies command to invoke for package require if a suitable version of package
can not be found in package ifneeded database. With command, Tcl appends two
args for the package name and version when invoked or removes package unknown
if its an empty string. Without command, the current package unknown script is 
returned.

package vcompare version1 
version2

Returns -1 if version1 is earlier than version2, 0 if equal, and 1 if later. 

package versions package Returns list of all versions numbers of package in package ifneeded database. 

package vsatisfies version1 
version2

Returns 1 if version2 scripts will work unchanged under version1 (version1 >=
version2 and both samesame major version #), 0 if not. 

::pkg::create -name 
packageName -version 
packageVersion ?-load filespec?
... ?-source filespec? ...

Construct an appropriate package ifneeded command for packageName. Where -load
is used with load cmd and filespec is a two item list of filename and a list of cmds
provided. -source is used with the source cmd.

pkg_mkIndex ?options? ?--?
directory ?pattern ...?

Creates the pkgIndex.tcl file in the specified directory with all files matching pattern
using Pattern Globbing.

-direct (Tcl 8.0.4+) A packages in index file will be loaded upon package require. (default
in Tcl 8.3+)

-lazy (Tcl 8.3+) A package in index file will be loaded when one of the provided commands
is used. (default up to Tcl 8.2.3)

-load pkgPat (Tcl 8.0.4+) Packages that match pkgPat using Pattern Globbing in the current
interpreter will be pre-loaded into slave interpreter used to generate index. In Tcl
8.4.2+ match is case insensitive.

-verbose (Tcl 8.0.4+) Generate output to stderr during indexing process.

2.16 Procedures
Procedures are used to partition segments of code into subroutines so they can be called from other parts of an application
or recursively. Procedures behave just like built-in commands and can have variable length arg lists. Variables within a
procedure can be decalared as local (default) or global.



Command Description 

name ?args? Calls procedure name with optional args.

global varName
?varName ...?

Creates local variables (result of namespace tail) linked to the global or namespace qualified variables
varName. Only valid within procedures. VarName can reference an array but not an element in an 
array. Tcl 8.5+ will return an error for array elements.

proc name {arg
?default?...} 
{body}

Create a new Tcl procedure named name (or replaces existing procedure) where args is a list of
arguments (each element is list of arg name and optional default value) and body is Tcl commmands to
evaluate when invoked. Name can contain namespace qualifiers. If args is used as the last arg, all
remaining args will be combined into a list and assigned to the args variable. Don’t use "." as a proc
name with Tk.

return  ?options? 
?string?

Return immediately from current procedure, top-level command, or source command with string
(default is empty string) as the returned value. Options are:

-code code Valid return codes are: ok (0), error  (1), return  (2), break (3), continue (4), or an integer. 

-errorcode 
error

Used with -code error, to set the global variable errorCode to error. Used for additional info about the 
error (in list format for Tcl 8.5+ and defaults to NONE). 

-errorinfo  info
Used with -code error, to set the global variable errorInfo  to info. Used for the procedure stack trace
(in list format for Tcl 8.5+). 

-level level (Tcl 8.5+) Number of levels (default is 1) up the calling stack to return code to (intermediate steps get
code return).

-options options(Tcl 8.5+) Dictionary of options to return.

uplevel (See Variables) 

upvar (See Variables) 

2.17 Strings
A string is an arbitrary series of bytes (including binary data with null characeters) of any size up to the amount of
available virtual memory. Character Strings are a special type of string kept in UTF-8 encoding by Tcl. Most Tcl
commands expect to work on character strings and may not be able to handle binary data. Each character in a string is
indexed like an array starting with index 0. The string command arguments of index , startIndex, charIndex, lastIndex, first,
and last can be replaced with end to use the index of the last character in string . In Tcl 8.1.1+, end-number (where number
an integer) can be used to specify an index of the last character minus the specified number.

Command Description 

append varName ?value ...?Appends each of the given values to the string stored in varName.



binary format  formatString
?arg ...?

Returns the args converted to a binary string based on formatString. The formatString is a
sequence of field specifiers and optional integer count pairs separated by 0 or more spaces. 
The default count is 1. For strings and positions the count is the size and a count of "*"
indicates all bytes/chars in arg will be used, otherwise will truncate if too long or pad if too
sort. For ints and floating points it is the number of repetitions. Binary and hex types zero
pad to the byte boundary if count > num of bytes/chars or truncate if count < num of
bytes/chars. The field specifiers are:

String Types Type
Size 
(bits)

Native
Little 
Endian

Big 
Endian

a ISO 8859-1 chars
(8-bit, null pad)

Binary (0 pad,
byte 
boundary)

1 b B

A ISO 8859-1 chars
(8-bit, space pad)

Hex (0 pad) 4 h H

Char 8 c c c

Position Types Short Int 16 t (8.5+) s S

x Null (\0) Int 32 n (8.5+) i I

X Backspace (X* skip to 
start) Wide Int 64

m 
(8.5+)

w (8.4+) W (8.4+) 

@ Absolute position
(@* skip to end)

Float (IEEE) 32 f r (8.5+) R (8.5+) 

Double 
(IEEE) 64 d q (8.5+) Q (8.5+) 

binary scan string
formatString varName
?varName ...?

Converts binary data into varName string variables based on formatString. Returns the
number of strings converted. Stores integers as signed ints. The format field specifiers are
the same as binary format  except for:

a ISO 8859-1 chars (no pad 
stripping)

A ISO 8859-1 chars (strip null & space 
pad)

x skip



format formatString ?arg 
...?

Returns a formated string similar to the ANSI C sprintf. The format string is 
%[argpos$][flag][width][.prec][len]char  where argpos, width, and prec are integers.
Fields are:

Field Description

argpos Specifies arg to use for value with format {arg #}$. Argpos can be a variable by
using ${var}$ or if quoting "${var}\$". Uses successive args for * specifiers. If
any positional specifier is used, then all conversions must use them. Optional field.

flag Conversion flag. See options below. Optional field.

width Minimum field width. Uses flag specified padding. A field width of * uses the next
arg as the field size. Optional field.

.prec Value is decimal places for e, E, and f; total digits for g and G; trunc size for ints;
and max chars for s. If precision is *, the next arg is used as the precision. Optional 
field.

len Use h to truncate numeric value to 16 bits before conversion and in Tcl 8.4+, use l
to insure value is 64 bits. Default is to use width of native machine word. Optional 
field.

char Conversion type. See options below. Required field.

Possible values for flag are: Possible values for char are: 

- left-justified d signed decimal c int to char 

+ always signed u unsigned decimal s string 

0 zero pad i
signed decimal (#,
0x#, or 0#)

f float (fixed) 

spacespace pad o unsigned octal e float (0e0)

# alt output (0 for oct, 0x for hex, include
"." for fp, keep 0 for %g)

x unsigned hex E float (0E0) 

X unsigned HEX g auto float (f
or e)

% plain % G
auto float (f
or E) 

regexp ?options? ?--? exp
string ?matchVar?
?subMatchVar ...?

Returns 1 if the regular expression exp matches part or all of string, 0 if not. If specified, 
matchVar will be set to the matching characters and the subMatchVar’s will be set to
parenthesized subexpressions starting with the leftmost one. Unused subMatchVar’s will
contain "-1 -1" if -indices was used or to an empty string otherwise. See Regular 
Expressions. Leave out vars if only matching is needed. To pre-compile use "set re {...};
regexp $re {}". Options are: 



-about (Tcl 8.2.3+) Instead of matchingexp, returns list with info on exp. First element is subexp
count and second is a list of property names of exp attributes.

-all (Tcl 8.3+) Match exp as many times as possible in the string, Vars will contain info on last 
match.

-expanded (Tcl 8.2.3+) Use expanded regular expressions and ignore comments and white-space.

-indicies Instead of storing matching chars in subMatchVar, store start and ending indices of match
in string .

-inline (Tcl 8.3+) Return list of data that would have been stored in matchVar and subMatchVar.
Used with -all, each iteration will have match data and each subexpression concatenated to 
list.

-line (Tcl 8.2.3+) Enables newline-sensitive matching. Equivalent to using both -linestop and 
-lineanchor or (?n) embedded option. 

-lineanchor (Tcl 8.2.3+) Changes behavior of "^" and "$" anchors so they match the start and end of a
line, respectively. Same as (?w) embedded option.

-linestop (Tcl 8.2.3+) Changes behavior of "[^" bracket expressions and "." so that they stop at
newlines. Same as (?p) embedded option.

-nocase Ignore case in matching.

-start index (Tcl 8.3+) Specifies char index offset to start matching exp at. With -indicies, the indices
will be in terms of the absolute beginning. "^" will not match line start.

regsub ?options? ?--? exp
string subSpec ?varName?

Substitute first match of regular expression exp in string with subSpec and put in varName
(default is to return matched portion in Tcl 8.4+) if specified, and return a count of
replacements made. Subspec’s "&" or "\0", are replaced with the matching string and "\#"
where # is [1-9], replaces the #th matched exp in string. See Regular Expressions. Options 
are:

-all Substitute exp with subSpec as many times as possible in the string.

-expanded (Tcl 8.2.3+) Use expanded regular expressions and ignore comments and white-space.

-line (Tcl 8.2.3+) Enables newline-sensitive matching. Equivalent to using both -linestop and 
-lineanchor or (?n) embedded option.

-lineanchor (Tcl 8.2.3+) Changes behavior of "^" and "$" anchors so they match the start and end of a
line, respectively. Same as (?w) embedded option.

-linestop (Tcl 8.2.3+) Changes behavior of "[^" bracket expressions and "." so that they stop at
newlines. Same as (?p) embedded option.

-nocase Ignore case in matching.

-start index (Tcl 8.3+) Specifies char index offset to start matching exp at. "^" will not match line start.



scan string format varName
?varName ...?

Parse string using format conversions, store results in varNames, and return a count of
conversions performed or -1 if none. Format is in the form of % [* ][argpos$ 
][width][size]char. White-space in the data is skipped except for c or [ ] set conversions. In
Tcl 8.3+, will return a list if no variables are specifed. Fields are:

Field Description

* Indicates that the converted value is to be discarded instead of assigned to a 
variable.

argpos Specifies arg to use for value with scan "{arg #}$". Argpos can be a variable by
using ${var}$ or if quoting "${var}\$". Uses successive args for * specifiers. If
any positional specifiers are used, then all conversions must use them. In Tcl
8.3.3+, if #$ is used after %  then #varName is used instead. Optional field.

width Integer maximum field width. Optional field.

size Field size modifier. In Tcl 8.4+, use l or L to insure value is stored as 64 bits.
Default is to truncate to width of native machine word. Optional field.

char Conversion type. See options below. Required field.

Numeric Conversion Types: Character ConversionTypes: 

d signed dec int c char to int
s

string (non-white- 
space)

o octal e or f float (0e0 or 0E0) [abc], [a-c] chars in given range 

x hex g auto float (f or e) [^ abc], [^ a-c] chars not in given 
range

u unsigned int
(Tcl 8.1+)

space
or tab

any amount of
white-space (without 
%)

n Store # chars scanned
in varName (Tcl 8.2+)

i int (Tcl 8.1+) 
dec,hex,oct

string bytelength string (Tcl 8.1.1+) Returns number of bytes for UTF-8 encoding of string.

string compare ?options? 
string1 string2

Lexicographically (ASCII value) compares string1 to string2 and returns -1, 0, or 1 if 
string1 is less than, equal to, or greater than string2, respectively. Options are: 

-nocase (Tcl 8.1.1+) Ignore case 

-length number (Tcl 8.1.1+) Only compare first number of characters.

string equal ?options? 
string1 string2

(Tcl 8.1.1+) Compare string1 to string2 character by character and return 1 if they are
identical, 0 if not. Options are: 

-nocase Ignore case 

-length number Only compare first number of characters. 

string first string1 string2 
?startIndex?

Returns the index of the first char of the first occurance of the exact match of string1 in 
string2, -1 if none. In Tcl 8.1.1+, startIndex specifies the offset of the first char to use in the
search and can be end or end-number . 

string index string index Returns the character at index in string. If index < 0 or > end, returns empty string. In Tcl
8.1.1+, index can be end or end-number . 

string is  class ?options? 
string

(Tcl 8.1.1+) Returns 1 if string is a valid member of class (see Regular Expression
Character Classes), 0 if not. Options are: 

-strict An empty string will not match (default is it always will).

-failindex varName If not a member, the index in the string where class is no longer valid will be stored in 
varName.For boolean, true, and false, if 0 is returned, varName will also be set to 0. For 
double, integer, or wide integer, an under/overflow will return 0 and varName will be set
to -1. 

string last  string1 string2 
?lastIndex?

Return the index of first char in the last occurance of the exact match of string1 in string2,
-1 if none. In Tcl 8.1.1+, lastIndex specifies the offset of the last char to use in the search
and can be end or end-number. 



string length string Returns the number of characters in string based on the encoding or bytes for binary data. 

string map ?-nocase? 
charMapList string

(Tcl 8.1.1+) Replaces characters in string based on and in the order of the key/value pairs in 
charMapList.CharMapList is a list of key/value pairs (can be multiple chars) as the
elements. Case is ignored if -nocase is used. 

string match ?-nocase? 
pattern string

Returns 1 if pattern matches string using Pattern Globbing, 0 if not. In Tcl 8.1.1+, case will
be ignored with -nocase. 

string range string first last Returns characters in string between indices first and last inclusive. If first < 0, then 0 is
used. If last > end, then end is used. If first > last, then empty string is returned. First and 
last can be end. In Tcl 8.1.1+, first and last can also be end-number. 

string repeat string count (Tcl 8.1.1+) Returns string repeated count times.

string replace string first
last ?newString?

(Tcl 8.1.1+) Replaces characters in string between indices first and last, inclusive, with 
newString (default is to delete chars). If first < 0, then 0 is used. If last > end, then end is
used. If first > last, first > string length, or last < 0, then string is returned unchanged. 

string tolower string ?first? 
?last?

Returns new string formed by converting all chars in string to lower case. In Tcl 8.1.1+, a
subset of the string between indicies first and last, inclusive, can be converted. First and 
last can be end or end-number . 

string totitle  string ?first? 
?last?

(Tcl 8.1+) Returns new string formed by converting the first char in string to title case (or
upper case if no title case equivalent) and the rest to lower case. If specified, a subset of the
string between indicies first and last, inclusive, can be converted. First and last can be end
or end-number.

string toupper string ?first? 
?last?

Returns new string formed by converting all chars in string to upper case. In Tcl 8.1.1+, a
subset of the string between indicies first and last, inclusive, can be converted. First and 
last can be end or end-number . 

string trim   string ?chars? Returns new string formed by removing from string any leading or trailing characters
present in the set chars (defaults to white-space). 

string trimleft  string 
?chars?

Same as string trim  for leading characters only. 

string trimright  string 
?chars?

Same as string trim  for trailing characters only. 

string wordend string index Returns index in string of char just after last char in the word containing index. 

string wordstart  string 
index

Returns index in string of first char in the word containing index. 

tcl_endOfWord string start Returns the index of the first end-of-word location that occurs after a starting index start in
the string string or -1 if none remain.

tcl_startOfNextWord  
string start

Returns the index of the first start-of-word location that occurs after a starting index start in
the string string or -1 if none remain.

tcl_startOfPreviousWord 
string start

Returns the index of the first start-of-word location that occurs before a starting index start
in the string string or -1 if none remain.

tcl_wordBreakAfter  string 
start

Returns the index of the first word boundary after the starting index start in the string string
or -1 if no more boundaries.

tcl_wordBreakBefore 
string start

Returns the index of the first word boundary before the starting index start in the string 
string or -1 if no more boundaries.



2.18 Variables



Command Description 

global varName ?varName 
...?

(See Procedures)

incr  varName ?increment? Increment the integer value stored in varName by increment (default is 1). Max increment
value is pow(2,32)

set varName ?value? Store value in varName for current scope and namespace. Without value, returns the
current value of varName. Can use namespace qualifiers in varName to specify a
namespace or ::VarName for global variables. See Syntax for variable substitution forms.

set arrayName(index) 
?value?

Same as above except for array element.

trace add type name opList 
command

(TCL 8.4+) Adds Tcl commands to be executed whenever certain operations are invoked. 
Types are:

command Arrange for command to be executed whenever command name is modified based on 
opList (rename or delete). Args appended to command at execution are the oldCmdName,
newCmdName, and opList. For delete newName is empty string. In Tcl 8.4.2+, the
command name is fully qualified.

execution Arrange for command to be executed whenever command name is executed based on 
opList. Available opList options are: enter (before execution start), leave (after execution
completes), enterstep (before each command in name is executed), or leavestep (after each
command in name is executed). For enter and enterstep, args appended to command at
execution are the command-string (complete cmd being executed) and opList. For leave
and leavestep, appended to command at execution are the command-string (complete cmd
being executed), code (exec result code), result (exec result string), and opList .

variable Arrange for command to be executed whenever variable name is accessed or modified
based on opList. Available opList options are: array  (via array  cmd), read (variable is
read), write  (variable is written), or unset (variable is unset). Args appended to command
when executed are name1 (scalar var name or array name), name2 (empty string or array
index, if not whole array), and opList.

trace info type name (TCL 8.4+) Returns list (where each element is a two element list of opList and command
pairs) of trace operations currently set for command or variable name. Options for type are
the same as trace add.

trace remove type name
opList command

(TCL 8.4+) Removes trace on Tcl commands or variables to be executed as defined in 
trace add operation. Options for type, name, opList, and command are the same as trace 
add except opList can be a list of opList to use.

trace variable varName ops 
command

Same as trace add variable varName ops command, except ops is not a list and can be a
string of: a for array, r  for read, w for write, and/or u for unset. 

trace vdelete varName ops 
command

Same as trace remove variable varName ops command, except ops is not a list and can be
a string of: a for array, r  for read, w for write, and/or u for unset.

trace vinfo varName Same as trace info variable varName. 

unset?-nocomplain??--?
name ?name ...?  

Removes the variables or arrays name from scope. If name is an array(index) in an array,
only that element is removed. If its just an array name then the whole array is deleted. See 
Syntax for variable substitution forms. In Tcl 8.4+, -nocomplain suppresses any possible 
errors.

uplevel ?level? arg ?arg ...?Evaluates concatenation of args in the variable context indicated bylevel (default is 1). 
Level is an integer that gives the distance up the calling stack or with a prefix of "#", the
absolute level number down the stack from global level #0. Returns result of evaluation.
There is a performance impact if level is not specified.

upvar ?level? otherVar
localVar ?otherVar localVar 
...?

Links localVar in local scope to otherVar in the variable context indicated by level (default
is 1) so they share the same storage space. LocalVar must be scalar (Tcl 8.5+ will return an
error for an array), but otherVar can be scalar, an array, or an array element. Level has the
same definition as uplevel. The unset operation affects the linked to variable otherVar and
not the upvared variable localVar. Traces on otherVar (except for entire arrays) will also
work for localVar, but the variable returned will be localVar. 

variable (See Namespaces )



3 Tk Commands

3.1 Bindings and Events
Command Description 

bind tag Returns a list of all sequences for which there exist bindings for window tag. See Tags for tag format 
options. 

bind tag sequence Returns the script bound to sequence for window tag or empty string if none. See Event 
SequencePatterns for sequence format options. 

bind tag sequence 
script

Create a binding to evaluate script at global level by the same interpreter whenever event in sequence
occurs within window tag. If script is prefixed with "+" (within braces if used), it is appended to the
existing binding. If script is an empty string, the current binding is removed. See Event Generation
and Substitutions for script % substitutions. The script can contain continue to terminate current
script and break to terminate current script and skip remaining scripts. If an error occurs during the 
script execution, bgerror  will be executed at the global level. 

bindtags window 
?tagList?

Change tags and tag order for window to contents of list tagList. If tagList is an empty list, the tags
are set back to the default (window name, window class, toplevel window, and all). Without tagList,
the current set of binding tags is returned. 

event add 
<<virtual>> 
sequence
?sequence ...?

Define a virtual event by triggering virtual event virtual whenever any one of the sequences occur.
See Event Sequence Patterns for sequence format options. 

event delete 
<<virtual>> 
?sequence ...?

Deletes each sequence (or all without sequence) from the trigger list for virtual eventvirtual . Ignores 
sequences not associated with virtual event virtual . See Event SequencePatterns for sequence format 
options. 

event generate 
window event
?option value ...?

Generates a window event in window as if it had came from the window system. See Event Sequence 
Patterns for event format options. See Event Generation and Substitutions for options. The -when
options are: 

-when now process immediately (default without -when)
-when tail place at end of event queue

-when head place at beginning of event queue

-when mark same as head but behind previous generated -when mark events

event info 
?<<virtual>>?

Returns a list where each element is a sequence that triggers virtual event virtual. Without virtual,
returns a list of all defined virtual events.

Tags
Each window has an associated list of tags, and a binding applies to a particular window if its tag is among those specified
for the window. The supported tag formats are: .a.b.c format (path name for window) or an arbirtary string. When a
window or widget is destroyed, its bindings are also deleted but not bindings to the tags associated with the window. The
default binding tags behavior and order is:

Order Tag Applicability

1 internal window nameapplies to just that window

2 toplevel window nameapplies to top level and all its internal windows

3 widget class name applies to all widgets in class

4 all applies to all windows in application



When used for items within a canvas or text widget, bindings for items will be invoked before bindings for the window as a
whole. The binding order is:

Order Binding Description

1 all binding associated with all tag

2 item tag one binding for each of the item’s tags (in order)

3 item id binding associated with item’s id

Event Sequence Patterns
The sequence argument is a list of one or more event patterns with optional white space between the patterns. An event
pattern may be one of the following forms:

Event Pattern Description

ASCII char a single ASCII character (except space or "<") that matches a Keypress event 

<modifier-modifier-type-detail>

String with zero or more modifiers (see Modifiers below), an event type (see Event 
Types below), and a detail field (see Details below) identifying a particular button or
keysym, separated by white space or dashes. Any field may be omitted as long as at least
one of type and detail is present. Shortcuts for keyboard events: <Keypress-x>, <Key-x>,
<x>, x. Shortcuts for mouse button events: <ButtonPress-1>, <Button-1>, <1>. 

<<name>>

User-defined virtual event of name name . Modifiers may not be combined with a virtual
event. Binding to a virtual event may be performed before the virtual event is defined. If
the virtual event definition changes, all windows bound to that virtual event will respond
immediately to the new definition. See Default Virtual Events for default events. 

Modifiers:
Modifiers are used to modify button or key events. Button is the associated mouse button. Mod is the associated modifier
key. Meta and M  refer to whichever of the M1 through M5 modifiers is associated with the meta key(s) on the keyboard
(keysyms Meta_R and Meta_L) or none if no match. Double,Triple ,Quadruple refer to multiple mouse clicks within the
time-out period or other repeating events. In Tk 8.5+ for MS Windows, the Extended modifier appears for events that are
associated with the keys on the "extended keyboard." On a US keyboard, the extended keys include the Alt and Control
keys at the right of the keyboard, the cursor keys in the cluster to the left of the numeric pad, the NumLock key, the Break
key, the PrintScreen key, and the / and Enter keys in the numeric keypad.

Command (Mac) Button-1 or B1 (left) Mod1 or M1 (Num Lock) Meta or M  

Control Button-2  or B2 (middle) Mod2 or M2 (Alt) Double 

Shift Button-3 or B3 (right) Mod3 or M3 (Scroll Lock) Triple  

Lock Button-4 or B4 Mod4 or M4 (Extended,
Tk 8.5+ MS Windows)

Quadruple (Tk 8.3+) 

Alt Button-5  or B5 Mod5 or M5

Event Types:



Type Description Type Description

Activate Toplevel window of sub-window has been
activated (Mac, Windows)

FocusOut Window has lost keyboard focus

ButtonPress, 
Button

Button is pressed Gravity Window has moved due to change in
the size of parent window

ButtonRelease Button is released KeyPress, 
Key

Key is pressed

Circulate Window stacking order has changed (not
supported on MS Windows)

KeyRelease Key is released

CirculateRequest
(Tk 8.4+) Generated when an application
wants its windows raised/lowered.
Window Manager use only.

Leave Mouse is leaving window

Map Window has been remapped (opened or 
restored)

Colormap Color map has changed MapRequest (Tk 8.4+) Generated when an
application wants its main window
mapped to the screen. Window
Manager use only. 

Configure
Window size, position, border, or stacking
order has changed

ConfigureRequest (Tk 8.4+) Generated when an application
wants its toplevel window moved or 
resized. Window Manager use only.

Motion Mouse is moving in window

MouseWheel (Tk 8.0.4+) Mouse scroll wheel has 
moved

Create (Tk 8.4+) Generated when a new window
is created

Property Window property has changed or been
deleted (X11 only)

Deactivate
Toplevel window of sub-window has been
deactivated (Mac, Windows)

Reparent Window has changed parents

Destroy Window has been destroyed (after 
destroy)

ResizeRequest(Tk 8.4+) Generated when an
application wants to have its main
window resized. Window Manager use 
only. Enter Mouse has entered window

Expose Window has been exposed (needs to
redrawn which is handled by TK)

Unmap Window has been unmapped (iconified
or forgotten by geometry manager)

FocusIn Window has received keyboard focus Visibility Window has changed visibility (For
MS Windows, this is only for entire 
window) 

Details:
Event Type Detail Result

ButtonPress, 
ButtonRelease

button
number (1-5)

If a button number is specified, only an event on that particular button will match
and type will default to ButtonPress, otherwise an event on any button will match.

KeyPress, 
KeyRelease

keysym Keysyms are textual specifications for the keys on the keyboard. See Keysyms
below. If specified, type will default to Keypress.

Keysyms:
Commonly used keysyms for the detail field are 0-9, A-Z, a-z, and those in the table below. Complete list is available in 
/usr/include/X11/keysymdef.



Alt_L comma F9 KP_Decimal Next Scroll_Lock
Alt_R Control_L F10 KP_Divide nobreakspace Select
ampersand Control_R Find KP_Enter numbersign semicolon
App degree greater KP_Equal Num_Lock Shift_L
asciicircum Delete Help KP_F1 parenleft Shift_Lock
asciitilde diaeresis Home KP_F2 parenright Shift_R
asterisk dollar Hyper_L KP_F2 Pause slash
at Down Hyper_R KP_F4 percent space
backslash End hyphen KP_Multiply period Super_L
BackSpace equal Insert KP_Separator periodcentered Super_R
bar Escape KP_0 KP_Space plus Sys_Req
Begin exclam KP_1 KP_Subtract plusminus Tab
braceleft Execute KP_2 KP_Tab Print underscore
braceright F1 KP_3 Left Prior Undo
bracketleft F2 KP_4 less question Up
bracketright F3 KP_5 Linefeed quotedbl Win_L
Break F4 KP_6 Menu quoteleft Win_R
Cancel F5 KP_7 Meta_L quoteright
Caps_Lock F6 KP_8 Meta_R Redo
Clear F7 KP_9 minus Return
colon F8 KP_Add Multi_key Right

Default Virtual Events:
Tk 
Ver

Virtual Event Event Pattern
(except text widget)

Text Widget Unix Windows Mac 
(Aqua)

All <<Clear>> <Clear>

All <<Copy>> <Control-c> <Meta-w> <F16> <Control-Insert> <F3>

All <<Cut>> <Control-x> <Control-w> <F20> <Shift-Delete> <F2>

8.4+ <<Modified>>
All <<Paste>> <Control-v> <Control-y> <F18> <Shift-Insert> <F4>

8.0.3+ <<PasteSelection>> <ButtonRelease-2>
All <<PrevWindow>> <Shift-Tab>

8.4+ <<Redo>> <Control-Z> <Control-y> <Control-y> 

8.4+ <<Selection>>
8.4+ <<Undo>> <Control-z> <Control-underscore>

8.5+ <<TraverseIn>>

8.5+ <<TraverseOut>>

Binding Matches



Trigger Action

If several bindings to match a given X event
but have different tags

Each binding is executed. The default order is: binding for the widget, class
binding, binding for its toplevel, and the all binding.

If several bindings match a given X event
and they have the same tag

The most specific binding is chosen and its script is evaluated. See Order of 
Tests below for criteria to determine most specific binding.

If the matching sequences contain more than
one event

Tests 3 to 5 in Order of Tests below are applied in order from the most
recent event to the least recent event in the sequences. If these tests fail to
determine a winner, then the most recently registered sequence is the 
winner.

If there are two or more virtual events
triggered by the same sequence, and those
virtual events are bound to the same tag

Only one of the virtual events will be triggered and it will be picked at 
random

A given X event does not match any of the
existing bindings

The event is ignored. An unbound event is not considered to be an error.

When a sequence specified in a bind
command contains more than one event 
pattern

Its script is executed whenever the recent events (leading up to and
including the current event) match the given sequence. (ex. Triple  will also
match Double).

Order of Tests
Sequence Test

1 pattern that specifies specific button or key

2 longer sequence of events matched

3 more matching modifiers

4 physical pattern not associated with a virtual event

5 undefined match for two or more virtual events

Event Generation and Substitutions
Binding scripts can contains % substitution codes to insert details about the event. When executed, a new script is
generated which replaces the substitution codes with an properly formatted list containing the specified information from
the current event. Invalid substitutions are undefined.

Event Generate 
Option

Bind 
Code

Description Valid Events 

%% Percent sign all events

%A Substitute ASCII (pre Tk 8.2) or
ISO Latin 1 (Tk 8.2+) char for
event or empty string {} if none

KeyPress, KeyRelease

-above window %a
above field for event where 
window is a path name or integer
window id

Configure 

-borderwidth 
size

%B
border_width field for event
where size is distance

Configure, ConfigureRequest, Create 

-button 
number

%b
Button number for event (detail 
field)

ButtonPress, ButtonRelease 

-count number %c count field for event Expose, Map 

-data string %d Specifies user data field. Only valid for virtual events. 

-delta number %D (Tk 8.4+) reports the delta value
where sign represents direction.

MouseWheel

-detail detail %d detail field for event. See below
for detail enums.

Enter, Leave, FocusIn, FocusOut 



-focus boolean %f focus field for event Enter, Leave 

-height size %h height field for event Configure, ConfigureRequest, Expose 

%i (Tk 8.4+) window field for event
as a hex number

CreateNotify

-keysym name %K keysym for event as a text string KeyPress, KeyRelease
-keycode 
number

%k
keycode field for event

KeyPress, KeyRelease 

%N keysym for event as a decimal 
number

KeyPress, KeyRelease

-mode notify %m mode field for event. See below
for notify enums.

Enter, Leave, FocusIn, FocusOut 

-override 
boolean

%o
override_redirect field for event

Map, Reparent, Configure,ConfigureRequest 

%P (Tk 8.4+) substitute the atom
name for the property being 
changed

PropertyNotify

-place where %p place field for event. See below
for where enums.

Circulate, CirculateRequest 

-root window %R root window path name or ID for 
event

KeyPress, KeyRelease,ButtonPress, ButtonRelease, Enter, 
Leave, Motion

-rootx coord %X x_root field for event. KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 
Leave, Motion

-rooty coord %Y y_root field for event. KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 
Leave, Motion

-sendevent 
boolean

%E
send_event field for event. True
for event generate, false for
system generated.

all events 

-serial number %# serial number for event all events 

-state state %s state field for event. See below
for enums.

all events 

-subwindow 
window

%S
subwindow ID for event KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 

Leave, Motion

-time integer %t time field for event KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 
Leave, Motion, Property

%T type field for event all events

-warp boolean (Tk 8.3+) Whether screen pointer
should warp

KeyPress, KeyRelease,ButtonPress,ButtonRelease, Motion

%v value_mask field for event Configure, ConfigureRequest
-width number %w width field for event Configure, ConfigureRequest

%W path name of the window/widget
to which the event was reported

all events

-x coord %x
x field (relative) for event KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 

Leave, Motion, Expose,Configure, ConfigureRequest, 
Gravity , Reparent

-y coord %y
y field (relative) for event KeyPress, KeyRelease,ButtonPress,ButtonRelease, Enter, 

Leave, Motion,Expose,Configure, ConfigureRequest, 
Gravity , Reparent

For some of the above substitutions, the possible replacement strings are:



Code Event Replacement String

%d Enter , Leave,FocusIn, FocusOut NotifyAncestor, NotifyDetailNone,NotifyInferior ,NotifyNonlinear , 
NotifyNonlinearVirtual , NotifyPointer ,NotifyPointerRoot, or 
NotifyVirtual

%d ConfigureRequest Above, Below, BottomIf ,Opposite, None, or TopIf
%m Enter , FocusIn,FocusOut, Leave NotifyNormal, NotifyGrab ,NotifyUngrab , or NotifyWhileGrabbed
%p Circulate ,CirculateRequest PlaceOnTop or PlaceOnBottom
%s ButtonPress, ButtonRelease,Enter, 

KeyPress, KeyRelease, Leave, 
Motion

decimal integer

%s Visibility VisibilityUnobscured , VisibilityPartiallyObscured , or 
VisibilityFullyObscured

3.2 Button Widget
Command Description 

button 
pathName
?options? 

Creates a button pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should. A button widget can display text, a bitmap, or
an image. Selecting a button will cause the associated command to be evaluated. Multiple fonts within a
button text field are not supported. 

Button Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -font -relief 

-activeforeground -foreground -repeatdelay (Tk 8.4+) 

-anchor -highlightbackground -repeatinterval (Tk 8.4+) 

-background -highlightcolor -takefocus 

-bitmap -highlightthickness -text 

-borderwidth -image -textvariable 

-compound (8.4+) -justify -underline  

-cursor -padx -wraplength 

-disabledforeground -pady

Button Widget Specific

See Coordinates in General Tk Widget Information for screen unit options.



Configure 
Option

Resource 
Name

Resource 
Class

Description

-command 
script

command Command Tcl command to associate with the button. Script is invoked when mouse button
1 is released over the button window.

-default 
state

default Default Sets platform specific appearance state of default ring. Options are: active
(default button), normal (non-default button), or disabled (non-default button
without leaving space for default ring). 

-height 
height

height Height Height of button in screen units for bitmaps/images and in lines for text. Default
is to auto size.

-overrelief 
type

overRelief OverRelief (Tk 8.4+) Alternative relief for when mouse cursor is over button. Not used
when set to empty string (default). Options are: flat , raised, and sunken.

-state state state State State of button. Options are: active (mouse pointer over button, use 
activeforeground and activebackground),disabled (button is insensitive, use 
disabledforeground and background), or normal (use foreground and 
background ).

-width 
width

width Width Width of button in screen units for bitmaps/images and in characters for text.
Default is to auto size.

Button Widget Commands
Command Description 

pathName cget option Returns the current value of the configuration option for button pathName. See Button
Widget Options above for options.

pathName 
configure?option? ?value?
?option value ...?

Change the configuration option for the button pathName to value. Without value, a list
describing the available options is returned. Without option, a list describing all of the
available options for pathName is returned. For multiple options an empty string is returned.
See Button Widget Options above for options.

pathName flash Flash checkbutton by toggling between active and normal colors several times. Button is left
is initial state of active or normal. Ignored if button is disabled.

pathName invoke Toggle the selection state of the checkbutton and invoke the Tcl command specified with 
-command, if any. Returns value of Tcl command or empty string if no -command .
Ignored if button is disabled.

Default Button Widget Bindings
Active or normal button default bindings:

Event Description

<Enter> When mouse passes over button, relief changes to sunken (Unix and MS Windows only) and state 
becomes active.

<Leave> When mouse leaves the button, relief changes to rasied (Unix and MS Windows only) and state 
becomes normal.

<Button-1> When button 1 is pressed, relief changes to sunken (Unix and MS Windows only) and state 
becomesactive (Windows and Mac only).

<ButtonRelease-1>When button 1 is released, relief changes to rasied (Unix and MS Windows only) and state 
becomesnormal (Windows and Mac only). If still over button, -command script is invoked.

<space> If button has focus, relief changes tosunken, state becomes active, and command script is invoked.



3.3 Canvas Widget
Command Description 

canvas 
pathName
?options? 

Creates a canvas widget pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should. A canvas window can be used to show structured
graphics. Widgets created within the canvas are referred to as items and are displayed in the order they are
listed in the widget except for window items. Items are ordered from lowest (first) to highest (latest) in the
display list such that later items can obscure earlier items. New canvases are not given any default binding 
behavior. 

Canvas Options
Standard

See Common Options and Resources in Options and Resources for full details.

-background -insertbackground -selectbackground

-borderwidth -insertborderwidth -selectborderwidth

-cursor -insertofftime -selectforeground

-highlightbackground -insertontime -takefocus

-highlightcolor -insertwidth -xscrollcommand 

-highlightthickness -relief -yscrollcommand

Canvas Specific

See Coordinates in Options and Resources for screen unit options.

Configure Option Resource Name Resource Class Description

-closeenough float closeEnough CloseEnough Value indicating how close the mouse cursor must be to
an item before it is considered to be "inside" the item.
Default is 1.0. 

-confine boolean confine Confine Specifies whether to confine the canvas view to the scroll
region (default) or not. 

-height height height Height Height of canvas in screen units.

-scrollregion left top
right bottom

scrollRegion ScrollRegion List of four coordinates describing the left, top, right, and
bottom of a rectangular scrolling region. 

-state state state State (Tk 8.3+) State of canvas. Options are: active (when
mouse pointer is over widget), disabled, or normal.

-width width width Width Width of button in screen units.

-xscrollincrement 
distance

xScrollIncrement ScrollIncrement Specifies the increment for horizontal scrolling in screen
units. If distance <=0, scrolling is unconstrained. 

-yscrollincrement 
distance

Specifies the increment for vertical scrolling in screen
units. If distance <=0, scrolling is unconstrained. 

Item IDs and Tags
Each item in a canvas widget has an unique id and one or more tags. The symbol tagOrId is used to indicate that an
argument specifies either an id that selects a single item or a tag that selects zero or more items. It may contain a logical
expressions of tags by using operators: ’&& ’, ’ ||’, ’ ^ ’ ’ !’, and parenthezised subexpressions. When an item is destroyed,
bindings to IDs are also deleted, but not bindings to tags.



ID/Tag Description

unique id Unique numeric identifier of item within a canvas. Items can only have one id.

tag String of characters that other than a numeric value used to group items. Items can have multiple tags.

all Tag associated with all items in a canvas widget.

current Tag set automatically by Tk to the current item (topmost item) under the mouse pointer, if any.

Indicies or Character Positions:
Some canvas commands support the use of an index to locate the position of characters (text) or coordinates (line and
polygon) within the canvas starting from 0. The indicies for lines and polygons are always even. The following are the
valid forms of specifying an index :

Index 
form

Supported 
by

Description

number text, line, 
polygon

A decimal number giving the position of the desired character within the text item where 0 = first
character. Odd indicies for lines and polygons are decremented by 1. If number < 0, the 0 is used,
if number > length of text list, then end is used. For polygons, if number < 0 or > length, then
length is added or subtracted until number is in range.

end text, line, 
polygon

Character or coordinate just after last one in item.

insert text Character just after the insertion cursor.

sel.first text First selected character in item.

sel.last text Last selected character in item.

@x,y text, line, 
polygon

Character or coordinate at the point given by x and y using canvas coordinate system. If x or y are
outside the item coordinates, they are set to the first or last character in line closest to given point.

Canvas Commands
The following are the valid command operations that can be invoked on the canvas widget pathName created by the 
canvas command. Widgets created within the canvas are referred to as items.

Command Description 

pathName addtag tag searchSpec
?arg ...?

For each item that matches searchSpec and arg in canvas pathName, add tag to the list
of tags associated with that item. SearchSpec and arg options are: 

above tagOrId
Selects the last (topmost) item in display list, just after (above) the one given by 
tagOrId in the display list. 

all Selects all the items in the canvas. 

below tagOrId
Selects the first (lowest) item in display list, just before (below) the one given by 
tagOrId in the display list. 

closest x y ?halo? ?start?
Select the last (topmost) item in display list, closest to @x,y. If specified, it must be
below start in the display list. Any item closer than halo to the point is considered to
overlap it. 

enclosed x1 y1 x2 y2
Selects all the items completely enclosed within rectangular region @x1,y1 and 
@x2,y2 where x1 < x2 and y1 < y2. 

overlapping x1 y1 x2 y2
Selects all the items that overlap or are enclosed within rectangular region @x1,y1 and 

@x2 ,y2 where x1 < x2 and y1y2. < 

withtag tagOrId Selects all the items given by tagOrId. 

pathName bboxtagOrId ?tagOrId 
...?

Returns a list of four elements x1 y1 x2 y2, giving an approximate bounding box
(rectangular region @x1,y1 and @x2,y2) for all items named by the tagOrId args. If no 
tagOrId matches or items have empty bounding boxes, returns empty string. 



pathName bindtagOrId
?sequence? ?command?

Create a binding to evaluate command whenever event in sequence occurs within the
items named by tagOrId . See bind command for options. Only mouse, keyboard, and
virtual events can be used. 

pathName canvasxscreenx 
?gridspacing?

Returns the canvas x-coordinate that is displayed at window x-coordinate screenx
rounding to nearest multiple of gridspacing units, if specified. 

pathName canvasyscreeny 
?gridspacing?

Returns the canvas y-coordinate that is displayed at window y-coordinate screeny
rounding to nearest multiple of gridspacing units, if specified. 

pathName cget option Returns the current value of the configuration option. See Standard Options and 
Canvas Specific Options above for options.

pathName configure ?option?
?value? ?option value ...?

Change the configuration option to value. Without value, a list describing option is
returned. Without option, a list of all available options for pathName is returned. For
multiple options an empty string is returned. See Canvas Options above for options.

pathName coordstagOrId ?x0 y0
...? ?coordList?

Change coordinates for first item given by tagOrId to specifed coordinates or 
coordList (Tcl 8.3+). Without coordinates, returns a list whose elements are
coordinates of item tagOrId. 

pathName createtype ?x y ...?
?coordList? ?option value ...?

Create a new item in pathName of typetype (See Canvas Item Types below) at
specified coordinates or coordList (Tk 8.3+) with options. Returns id of new item.

pathName dcharstagOrId first 
?last?

For items given by tagOrId, delete the characters (text) or coordinates (line or
polygon) in the range given by first and last (defaults to first), inclusive. See Indicies
or Char Positions above. 

pathName delete?tagOrId ...? Delete each of the items given by each tagOrId . 

pathName dtagtagOrId 
?tagToDelete?

Delete the tag given by tagToDelete (default is tagOrId) from the list of associated
tags for each item given by tagOrId. 

pathName findsearchSpec ?arg 
...?

Returns a list of items in stacking order that satisfy the specification searchSpec. See 
addtag for searchSpec options. 

pathName focus ?tagOrId?
Set the keyboard focus to the first item (lowest) given bytagOrId that supports the
insertion cursor (text). If tagOrId is empty string, the focus item is unset. Without 
tagOrId , returns current item with focus or empty string if none. 

pathName gettags tagOrId
Return a list of the tags associated with the first item (lowest) given by tagOrId or
empty string if none. 

pathName icursor tagOrId index
Set the insertion cursor for the item(s) given by tagOrId that support the insertion
cursor (text) to just before the character at position index. See Indicies or Char 
Positions above. Does not effect keyboard focus. 

pathName indextagOrId index
Returns a decimal string giving the numerical index of the first item (lowest) within 
tagOrId corresponding to the character (text) or coordinate (line or polygon) at
position index. See Indicies or Char Positions above. 

pathName inserttagOrId
beforeThis string

For items given by tagOrId that support text or coordinate insertion, insert string just
before character (text) or coordinate (line or polygon) at position beforeThis . For lines
or polygons, string must be a valid coordinate sequence. See Indicies or Char 
Positions above. 

pathName itemcgettagOrId 
option

Returns the current value of the configuration option for the first item (lowest) given
by tagOrId. See Canvas Options above for options. 

pathName itemconfiguretagOrId
?option? ?value? ?option value 
...?

Change the configuration option for item tagOrId to value. Without value, a list
describing option is returned. Without option, a list of all available options for the first
item (lowest) given by tagOrId is returned. For multiple options an empty list is
returned. See Canvas Options above for options. 

pathName lowertagOrId 
?belowThis?

Move items given by tagOrId to a new position on the display list just before the first
(lowest) item given by belowThis . If tagOrId refers to more than one item, then all
items are moved, but their relative order remains the same. 

pathName movetagOrId xAmount 
yAmount

Move each of the items given by tagOrId in the canvas coordinate space by adding 
xAmount and yAmount to each items x and y coordinates, respectively. 



pathName postscript?option
value ...?

Generate a Encapsulated Postscript representation for part or all of the canvas. Options 
are: 

-channel channelID Specifies the channelID to write the Postscript code to.

-colormap varName
Specifies a color mapping array varName where each element is a color name and the
value is Postscript code to set a particular color value. If not set or for unspecified
colors, Tk uses the RGB intensities. 

-colormode mode
Specifies how to output color information where mode is: color, gray (grayscale), or 
mono (black or white). 

-file fileName
Specifies the file to write the Postscript code to. Not vaild for safe interpreters. If not
specified, the Postscript is returned as the result of the command. 

-fontmap varName

Specifies a font mapping array varName where each element is a list of two elements
consisting of the name and point size of a postscript font and the value is Postscript
code to set a particular font. If not set or for unspecified fonts, Tk attempts to guess.
See Fonts for font options. 

-height size
Specifies the height (default is canvas window height) of the area of the canvas to
print. See Coordinates in Options and Resources for screen unit options. 

-pageanchor anchor
Specifies which point (default is center ) of the printed area should be appear over the
positioning point on the postscript page. 

-pageheight size
Specifies that the Postscript should be scaled in both x and y directions so that the
printed area is size high (default is height on screen) on the Postscript page. See 
Coordinates in Options and Resources for screen unit options. 

-pagewidth size

Specifies that the Postscript should be scaled in both x and y directions so that the
printed area is size wide (default is width on screen) on the Postscript page. See 
Coordinates in Options and Resources for screen unit options. Supercedes 
-pageheight option. 

-pagex position
Set the x-coordinate of the positioning point on the postscript page to position (default
is center). See Coordinates in Options and Resources for screen unit options. 

-pagey position
Set the y-coordinate of the positioning point on the postscript page to position (default
is center). See Coordinates in Options and Resources for screen unit options. 

-rotate boolean
If true, the printed area is to be rotated 90 degrees for landscape orientation (default is
false for portrait). 

-width  size
Specifies the width (default is canvas window width) of the area of the canvas to print.
See Coordinates in Options and Resources for screen unit options. 

-x position
Specifies the x-coordinate of the left edge of canvas area (default is left edge of canvas
window) to print in canvas coordinates. 

-y position
Specifies the y-coordinate of the top edge of canvas area (default is top edge of canvas
window) to print in canvas coordinates. 

pathName raisetagOrId 
?aboveThis?

Move all items given by tagOrId to a new position on the display list just after the last
(topmost) item given by aboveThis. If tagOrId refers to more than one item, then all
items are moved, but their relative order remains the same. 

pathName scaletagOrId xOrigin
yOrigin xScale yScale

Rescale all items given by tagOrId in canvas coordinate space to change the distance
from @xOrigin,yOrigin by a scale factor of xScale,yScale (1.0 = no change) 
respectively. 

pathName scanoption args Implements scanning on canvas widgets. Options are:

mark  x y Records x and y and the current view in canvas. Typically associated with mouse
button press in widget at coordinates x,y.

dragto x y ?gain? Adjusts the view in Tk 8.3+ by gain (default is 10 in all Tk versions) times the
difference between the coordinates x,y and the last mark  x,y coordinates. Used with
mouse motion events to produce high speed dragging effect.

pathName selectoption ?tagOrId 
arg?

Manipulates the selection based on the specified option. Where specified, the first item
given by tagOrId that supports indexing and selection (text) is used. See Indicies or
Char Positions above for index options.



adjust tagOrId index Adjust the end of the selection nearest to the character given by index in tagOrId to
include up to index and set the other end to be the anchor point. Works the same as 
select to if selection is not in tagOrId.

clear Clear the selection if it is in the widget.

from  tagOrId index Set the selection anchor point to be just before the character given by index in the item
given by tagOrId.

item Return id of the selected item or an empty string if there is none.

to tagOrId index Set the selection to the characters in tagOrId from position index to the anchor point
(included only if index > anchor point) in tagOrId. If the anchor point is not in 
tagOrId, index is used.

pathName typetagOrId
Returns the type (see Canvas Item Types below) of the first item (lowest) given by 
tagOrId or empty string if none. 

pathName xview ?option args?

Query or change the horizontal canvas widget view. Without any options, a two
element list is returned specifying the start and end of the visible fraction (from 0 to 1)
of the horizontal span of the widget between the left and right edges of the window.
Vaild options and args are:

moveto fraction
Adjust the view in the window so that fraction (from 0 to 1) of the total width of the
widget is off-screen to the left. 

scroll number pages Shift the view left or right in units of nine-tenths the window’s width. If number < 0,
information farther to the left becomes visible, otherwise information farther to the
right becomes visible.

scroll number units Shift the view left or right by number units. If number > 0, units is same as 
xScrollIncrement option, otherwise units is one-tenth of window’s width.

pathName yview?option args? Query or change the vertical canvas widget view. Without any options, a two element
list is returned specifying the start and end of the visible fraction (from 0 to 1) of the
vertical span of the widget between the top and bottom edges of the window. Vaild 
options and args are:

moveto fraction Adjust the view in the window so that fraction (from 0 to 1) of the total height of the
widget is off-screen to the top.

scroll number pages
Shift the view up or down in units of nine-tenths the window’s height. If number < 0,
then higher information becomes visible, otherwise lower information becomes 
visible.

scroll number units Shift the view up or down by number units. If number > 0, units is same as 
yScrollIncrement option, otherwise units is one-tenth of window’s height.

Canvas Item Standard Options



Normal State Active State (Tk 
8.3+)

Disabled State (Tk 8.3+) Description

-dash pattern -activedash pattern -disableddash pattern (Tk 8.3+) Specifies dash pattern for item. Where 
pattern is:

list of 
integers

Each element represents the number of
pixels of a line segment. Only the odd
segments are drawn using the "outline"
color. The other segments are drawn 
transparant.

list
containing 
[.,-_ ]

Character list containing only 5 possible
characters. .={2 4}; ,={4 4}; -={6 4};
_={8 4} and space can be used to enlarge
the space between other line elements,
and can not occur as the first position in
the string.

-dashoffset 
offset

(Tk 8.3+) The starting offset in pixels into the pattern
provided by the -dash option. See Coordinates in 
Options and Resources for screen unit options.

-fill color -activefill color -disabledfill color Specifies the color to be used to fill an item’s area. See 
Colors in Options and Resources for color options.

-outline color -activeoutline color -disabledoutline color Specifies the color to be used to draw the outline of an
item. If set to an empty string, no outline is used. See 
Colors in Options and Resources for color options.

-offset offset (Tk 8.3+) Specifies the offset of stipples. The offset
value can be of the form x,y (origin is the canvas origin
or with a "#" prefix it is the origin of the current
toplevel window) or side (which can be: n,ne,e,se,s 
,sw,w,nw, or center). For the line and polygon items,
adding an index argument connects the stipple origin to
one of the coordinate points of the line/polygon.

-outlinestipple 
bitmap

-activeoutlinestipple 
bitmap

-disabledoutlinestipple 
bitmap

Specifies the stipple patterns to be used to draw the
outline of the item. If set to an empty string, a solid
outline is used. See Default Bitmaps in Options and 
Resources for bitmap options. Used with -outline.

-stipple bitmap -activestipple bitmap -disabledstipple bitmap Specifies the stipple patterns to be used to be used to
fill an item’s area. If set to an empty string, a solid fill
is used. See Default Bitmaps in Options and Resources
for bitmap options. Used with -fill .

-state state Set to override canvas widget’s global state for item.
State options are: normal, disabled, or hidden.

-tags tagList Specifies a set of tags to apply to item. TagList is a list
of tag names, which replace any existing tags for the 
item.

-width 
outlineWidth

-activewidth 
outlineWidth

-disabledwidth 
outlineWidth

Specifies the width of the outline (default is 1.0) to be
drawn around the item. See Coordinates in Options and 
Resources for screen unit options. Used with -outline .

Canvas Item Commands
See Canvas Item Standard Options above for item standard options below.

Command Description 



pathName 
create arc ?x1
y1 x2 y2?
?coordList?
?option value 
...?

Display an arc-shaped region (oval delimited by two angles specified by -start and -extent options). Args 
x1,y1 and x2,y2 or coordList give the coordinates of two diagonally opposite corners of a rectangular
region enclosing the oval that defines the arc. Options are:

-dash -activedash -disableddash -dashoffset 

-fill -activefill -disabledfill

-outline -activeoutline -disabledoutline

-outlinestipple -activeoutlinestipple -disabledoutlinestipple

-stipple -activestipple -disabledstipple -offset 

-width -activewidth -disabledwidth

-state

-tags

Arc Specific Options: 

-extent 
degrees

Size of the angular range occupied by arc in degrees (range = Â±360, if outside range then 
degrees modulo 360) counter-clockwise from -start angle. 

-start 
degrees

Starting angle (Â±) measured from 3-o’clock position. 

-style 
type

Arc is drawn as either type pieslice (default) where the enclosed region is a section of the
perimeter and two lines from the center to the perimeter endpoints; chord where the enclosed
region is a section of the perimeter and a line connecting the perimeter endpoints; or arc
where the enclosed region is just a section of the perimeter.

pathName 
create bitmap
?x y?
?coordList?
?option value 
...?

Display a bitmap at positioning point coordinates of x,y or coordList. Options are:

-state 

-tags 

Bitmap Specific Options: 

-anchor anchorPos Specifies how to position bitmap relative to item positioning point where 
anchorPos is n, ne, e, se, s,sw,w ,nw, or center (default).

-background color Specifies color to use for background in normal state. If not specified or set
to an empty string, then background is transparent. See Colors in Options
and Resources for color options.

-activebackgroundcolor (Tk 8.4+) Specifies color to use for background in active state.

-disabledbackgroundcolor (Tk 8.4+) Specifies color to use for background in disabled state.

-bitmap bitmap Specifies the bitmap to display in the normal state. See Default Bitmaps in 
Options and Resources for bitmap options.

-activebitmap bitmap (Tk 8.4+) Specifies the bitmap to display in the active state.

-disabledbitmap bitmap (Tk 8.4+) Specifies the bitmap to display in the disabled state.

-foreground color Specifies color to use (default is black) for foreground in normal state. See 
Colors in Options and Resources for color options.

-activeforegroundcolor (Tk 8.4+) Specifies color to use for foreground in active state.

-disabledforegroundcolor (Tk 8.4+) Specifies color to use for foreground in disabled state.



pathName 
create image
?x y?
?coordList?
?option value 
...?

Display an image at positioning point coordinates of x,y or coordList .Options are:

-state 

-tags 

Image Specific Options: 

-anchor anchorPos Specifies how to position the image relative to the item positioning point 
whereanchorPos is n, ne, e, se, s,sw ,w,nw, or center (default).

-image image Specifies the image to display in the normal state.

-activeimageimage (Tk 8.4+) Specifies the image to display in the active state.

-disabledimage 
image

(Tk 8.4+) Specifies the image to display in the disabled state.

pathName 
create line
?x1 y1 ... xN
yN?
?coordList?
?option value 
...?

Display one or more connected line segments or curves. Args x1,y1 through xN,yN or coordList give the
coordinates for a series of two or more points that describe a series of connected line segments. Options 
are:

-dash -activedash -disableddash -dashoffset 

-fill -activefill -disabledfill

-stipple -activestipple -disabledstipple

-width -activewidth -disabledwidth

-state

-tags

Line Specific Options:

-arrow  where 

Specifies whether an arrowhead should be drawn at line endpoints. Options are: none
(default option for no arrowheads), first  (for an arrowhead at the first point of the line), 
last (for an arrowhead at the last point of the line), or both (for arrowheads at both 
ends). 

-arrowshape
shape 

Specifies arrowhead shape where shape is a three element list (neck length to tip,
trailing point length to tip, width from line to trailing point). Default is a reasonable
shape. See Coordinates in Options and Resources for screen unit options. 

-capstyle style
Specifies caps to be drawn at endpoints of the line. Style options are: butt  (default), 
projecting, or round. Superceded by -arrow . 

-joinstyle style Specifies joints to be drawn at line verticies. Style options are: bevel ,miter , or round. 

-smooth 
smoothMethod

Set to true or bezier, smoothing is used to draw the line as a curve. The line is rendered
as a set of parabolic splines: one spline is drawn for the first and second line segments,
one for the second and third, and so on. Straight-line segments can be generated by
duplicating the end-points of the desired line segment. Set to false or {}, no smoothing
is performed. In Tk 8.5+, set to raw, indicates that the line should also be drawn as a
curve but where the list of coordinates is such that the first coordinate pair (and every
third coordinate pair thereafter) is a knot point on a cubic Bezier curve, and the other
coordinates are control points on the cubic Bezier curve. 

-splinesteps
number 

Specifies degree of smoothness desired for curves by approximating spline over number
line segments. Used with -smooth true or raw. 



pathName 
create oval
?x1 y1 x2 y2?
?coordList?
?option value 
...?

Display an oval region. Args x1,y1 and x2,y2 or coordList give the coordinates of two diagonally opposite
corners of a rectangular region enclosing the oval. The oval includes the top and left edges but not bottom
and right edges. Options are:

-dash -activedash -disableddash -dashoffset 

-fill -activefill -disabledfill

-outline -activeoutline -disabledoutline

-outlinestipple -activeoutlinestipple -disabledoutlinestipple

-stipple -activestipple -disabledstipple -offset 

-width -activewidth -disabledwidth

-state

-tags

pathName 
create 
polygon ?x1
y1 ... xN yN?
?coordList?
?option value 
...?

Display a polygonal or curved filled region. Args x1,y1 through xN ,yN or coordList give the coordinates
of three or more points that define a polygon. The first point is not repeated as the last point. Options are:

-dash -activedash -disableddash -dashoffset 

-fill -activefill -disabledfill

-outline -activeoutline -disabledoutline

-outlinestipple -activeoutlinestipple -disabledoutlinestipple

-stipple -activestipple -disabledstipple -offset 

-width -activewidth -disabledwidth

-state

-tags

Polygon Specific Options: 

-joinstyle 
style

(Tk 8.4+) Specifies joints to be drawn at outline verticies. Style options are: bevel, miter ,
or round.

-smooth 
boolean

Set to true, bezier smoothing is used to draw the outline as a curve. The line is rendered as
a set of parabolic splines: one spline is drawn for the first and second line segments, one
for the second and third, and so on. Straight-line segments can be generated by duplicating
the end-points of the desired line segment. Set to false or {}, no smoothing is performed.
In Tk 8.5+, set to raw, indicates that the line should also be drawn as a curve but where the
list of coordinates is such that the first coordinate pair (and every third coordinate pair
thereafter) is a knot point on a cubic Bezier curve, and the other coordinates are control
points on the cubic Bezier curve.

-splinesteps 
number

Specifies degree of smoothness desired for outline curves by approximating spline over 
number line segments. Used with -smooth true or raw. 



pathName 
create 
rectangle ?x1
y1 x2 y2?
?coordList?
?option value 
...?

Display a rectangular region. Args x1,y1 and x2,y2 or coordList give the coordinates of two diagonally
opposite corners of the rectangle. The rectangle includes the top and left edges but not bottom and right
edges. Options are:

-dash -activedash -disableddash -dashoffset 

-fill -activefill -disabledfill

-outline -activeoutline -disabledoutline

-outlinestipple -activeoutlinestipple -disabledoutlinestipple

-stipple -activestipple -disabledstipple -offset 

-width -activewidth -disabledwidth

-state

-tags

pathName 
create text ?x
y? ?coordList?
?option value 
...?

Display a string of characters in one or more lines at positioning point coordinates of x,y or coordList. 
Options are:

-fill -activefill -disabledfill  

-stipple -activestipple -disabledstipple 

-state

-tags

Text Specific Options:

-anchor 
anchorPos

Specifies how to position the text relative to the item positioning point where anchorPos
is n, ne, e, se, s,sw ,w,nw, or center (default).

-font 
fontName

Specifies the font to use for the text item. See Fonts for font options. Default is system 
dependent.

-justify  how
Specifies how to justify multiple text lines within its bounding region. How options are: 
left, right , or center.

-text string Specifies the characters to be displayed in the text item. Newline causes line break.

-width  
lineLength

Specifies the maximum line length for the text. If zero (default), break only on newline,
otherwise break on last space before maximum line length. See Coordinates in Options
and Resources for screen unit options. 



pathName 
create 
window ?x y?
?coordList?
?option value 
...?

Display a window at positioning point coordinates of x,y or coordList . It is not possible to draw other
graphical items on top of window items. A window item always obscures any graphics that overlap it,
regardless of their order in the display list. Options are:

-state 

-tags 

Window Specific Options:

-anchor 
anchorPos

Specifies how to position the window relative to the item positioning point where 
anchorPos is n, ne, e, se,s ,sw,w,nw, or center (default).

-height height
Height in screen units to assign item’s window. See Coordinates in Options and 
Resources for screen unit options. 

-width  width
Width in screen units to assign item’s window. See Coordinates in Options and 
Resources for screen unit options. 

-window 
pathName

Specifies the window pathName to associate with this item. The window must be either a
child of the canvas widget or a child of some ancestor of the canvas widget and not a
top-level window. 

3.4 Checkbutton
Command Description 

checkbutton 
pathName
?options? 

Creates a checkbutton widget pathName with options and returns the new widget’s path name. When
invoked, pathName must not exist, but pathName’s parent should. A checkbutton widget displays a
textual string, bitmap, or image and a square called an indicator. By default a checkbutton is configured
to select and deselect itself on alternate button clicks. Each checkbutton monitors its associated variable
and automatically selects and deselects itself when the variables value changes to and from the button’s
"on" value.Multiple fonts within a button text field are not supported. 

Checkbutton Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -disabledforeground -padx

-activeforeground -font -pady 

-anchor -foreground -relief 

-background -highlightbackground -takefocus 

-bitmap -highlightcolor -text  

-borderwidth -highlightthickness -textvariable 

-compound (8.4+) -image -underline 

-cursor -justify -wraplength 



Checkbutton Specific

See Coordinates in Options and Resources for screen unit options.

Configure 
Option

Resource 
Name

Resource 
Class

Description

-command 
script

command Command Tcl command to associate with the button. Script is invoked when mouse
button 1 is released over the button window. The button’s global variable 
(-variable option) will be updated before the command is invoked.

-height height height Height Height of button in screen units for bitmaps/images and in lines for text.
Default is to auto size.

-indicatoron 
boolean

indicatorOn IndicatorOn Specifies whether the indicator should be drawn (default) or not. If false,
the relief option is ignored and the relief is set to sunken when widget is
selected and raised in all other cases.

-offrelief  type offRelief OffRelief (Tk 8.4+) Specifies the relief for the checkbutton when the indicator is not
drawn and the checkbutton is off. Options are: flat , raised (default), and 
sunken.

-offvalue value offValue Value Value (default is 0) stored in button’s global variable when the checkbutton
is deselected.

-onvalue value onValue Value Value (default is 1) stored in button’s global variable when the checkbutton
is selected.

-overrelief 
type

overRelief OverRelief (Tk 8.4+) Alternative relief for when mouse cursor is over button. Not used
when set to empty string (default). Options are: flat , raised, and sunken.

-selectcolor 
color

selectColor Background Specifies a background color to use when the button is selected. If set to
empty string, no special color is used. If -indicatoron is true then the color
applies to the indicator, if false this color is used as the background for the
entire widget when selected.

-selectimage 
image

selectImage SelectImage Specifies image to be displayed when checkbutton is selected. Used with 
-image.

-state state state State State of button. Options are: active (mouse pointer over button, use 
activeforeground and activebackground), disabled (button is insensitive,
use disabledforeground and background), or normal (use foreground
and background ).

-tristateimage 
image

tristateImage TristateImage 
(Tk 8.5+) Specifies an image to display (in place of the image option)
when the checkbutton is in tri-state mode. This option is ignored unless the
image option has been specified. 

-tristatevalue 
value

tristateValue Value 
(Tk 8.5+) Specifies the value that causes the checkbutton to display the
multi-value selection, also known as the tri-state mode. Defaults to {}.

-variable 
variable

variable Variable Specifies name of global variable to use for button selection status. Default
is name of the button within its parent.

-width width width Width Width of button in screen units for bitmaps/images and in characters for
text. Default is to auto size.

Effect Options

Toolbar buttons -relief flat -overrelief raised
Text-style toolbar buttons-offrelief flat -indicatoron false -overrelief raised

Checkbutton Commands



Command Description 

pathName cget option Returns the current value of the configuration option for checkbutton pathName. See 
Checkbutton Widget Options above for options.

pathName 
configure?option? ?value?
?option value ...? 

Change the configuration option for the checkbutton pathNamevalue. Without value, a list
describing the available options is returned. Without option, a list describing all of the
available options for pathName is returned. For multiple options an empty string is returned.
See Checkbutton Widget Options to above for options.

pathName deselect Deselect the checkbutton and set the associated variable to its "off" value.

pathName flash Flash checkbutton by toggling between active and normal colors several times. Checkbutton
is left is initial state of active or normal. Ignored if checkbutton is disabled.

pathName invoke Toggle the selection state of the checkbutton and invoke the Tcl command specified with 
-command, if any. Returns value of Tcl command or empty string if no -command. Ignored
if button is disabled.

pathName select Select the checkbutton and set the associated variable to its "on" value.

pathName toggle Toggle the selection state of the checkbutton, redisplaying it and modifying its associated
variable to reflect the new state.

Default Checkbutton Bindings
Active or normal checkbutton default bindings:

Event Description

<Enter> On Unix, when mouse passes over button statebecomesactive.

<Leave> On Unix, when mouse leaves the button state becomes normal.
<Button-1> or <Return> or 
<space>

On Unix, relief changes to sunken and associated -command script is executed.

<Button-1> On Windows and Mac, relief changes to sunken and state becomes active.
<ButtonRelease-1> On Windows and Mac, relief changes to raised, state becomes normal, and associated 

-command script is executed.

<Enter> On Windows and Mac, relief changes to sunken and state becomes active.
<plus> or<equal> On Windows, selects the button.

<minus> On Windows, deselects the button.

<space> On Windows and Mac, relief changes to sunken and associated -command script is 
executed.

3.5 Clipboard and Selection
The clipboard selection is a platform independent method that allows for the exchange of data between applications via 
copy, cut, and paste. Only X-Windows supports the use of other selection types for all applications. Tk understands all
selection types on all platforms.



Command Description 

clipboard 
append?-displayof window? 
?-format  format? ?-type
type? ?--? data

Append data to clipboard on window ’s display in the form type with the representation 
format . Also claims ownership of clipboard on window’s display. See Common Target
Atom Types below for type options. See Common Selection Property Types below for 
format options. Format is required for non-Tk clipboard users. 

clipboard clear?-displayof 
window?

Claim ownership of clipboard on window’s display (default is ".") and clears its contents. 

clipboard get ?-displayof 
window? ?-type type?

(Tk 8.4+) Retrieve data from the clipboard on window’s display (default is ".") in form 
type. See Common Target Atom Types below for type options. Same as selection get
-selection CLIPBOARD.

selection clear ?-displayof 
window? ?-selection 
selection?

If selection (see Selection Atom Types below for options) exists anywhere on window’s
display (default is "."), clear it so that no window owns the selection anymore. 

selection get ?-displayof 
window? ?-selection
selection? ?-type type?

Returns the value of selection (see Selection Atom Types below for options) from 
window’s display (default is ".") in format type (see Common Target Atom Types below for
options). If the selection is returned in a non-string format, such as INTEGER or ATOM,
the selection command converts it to string format as a collection of fields separated by
spaces: atoms are converted to their textual names, and anything else is converted to
hexadecimal integers.

selection handle?-selection
selection? ?-type type? 
?-format  format? window 
command

Creates a handler for selection requests, such that command will be executed with args 
offset (starting char in selection) and maxChars (max chars to retreive) whenever selection
(see Selection Atom Types below for options) is owned by window (default is ".") and
someone attempts to retrieve it in the form given by type (see Common Target Atom Types
below for options). Format (see Common Selection Property Types below for options)
specifies how to format the data to the requestor. Format is required for non-Tk clipboard
users. If tclCommand is an empty string, the existing handler is removed. Tk 8.4+ (broken
in 8.4.0 and 8.4.1) adds a duplicate handler for UTF8_STRING when STRING is used for 
type.

selection own?-displayof 
window? ?-selection 
selection?

Returns the path name of the window in this application that owns selection (see Selection
Atom Types below for options) on the display containing window, or an empty string if 
none. 

selection own?-command 
command??-selection 
selection? window

Causes window to become the new owner of selection (see Selection Atom Types below for
options) on window’s display and sets up a handler to run command when window loses the
selection to another window later on. 

Definitions

Clipboard
Platform independent method that allows for the exchange of data between applications via copy, cut, and 
paste. 

Selection
Primary mechanism on X-Windows to exchange information via a copy and paste between clients. Selections
are assigned to an particular atom such that other applications can retreive the selection by specifying the same 
atom. 

Atom
Unique name (strings without a specific encoding) that clients can use to communicate information to each 
other. 

Selection Atom Types



Selection Type Description

PRIMARY (default) Principal means of communication between clients on X-Windows that use the selection 
mechanism.

SECONDARY Means of obtaining data when there is a primary selection and the user does not want to disturb it

CLIPBOARD Used to hold data that is being transferred between clients usually for data that is being cut or copied and
then pasted. This is the same buffer used by the clipboard command and is platform independent.

other Client specific private atom.

Common Target Atom Types
Target Type Description

ATOM Converted into ATOM name. 

FILE_NAME The full path name of a file.

POSTSCRIPT String data in postscript format.

STRING (default) Text encoded in ISO Latin-1 character set plus tab and newline.

INTEGER Converted to a collection of fields separated by spaces. 

UTF8_STRINGText encoded in UTF-8 character set plus tab and newline. 

other Converted to hexadecimal integers. 

Common Selection Property Types
Selection Property Types Description

ATOM Fields are converted to 32-bit atom values separated by white-space.

STRING (default) Uses 8-bit ASCII chars.

3.6 Console
Command Description 

console eval 
script

(Windows and Mac only) Evaluate the script argument as a Tcl script in the console interpreter.

console hide (Windows and Mac only) Hide the console window from view.

console show (Windows and Mac only) Display the console window. The console window replaces the real console
for input and output on platforms that do not have a real console. It is implemented as a separate
interpreter with the Tk toolkit loaded, and control over this interpreter is given through the console 
command.

console title 
?string ?

(Windows and Mac only) Change name of console window totitle. Without string, returns the console
window title.

consoleinterp
eval script

(Windows and Mac only) Evaluates script as a Tcl script at the global level in the main interpreter.

consoleinterp
record script

(Windows and Mac only) Records and evaluates script as a Tcl script at the global level in the main
interpreter as if script had been typed in at the console.



Default Console Bindings
In Tk 8.2.x+ all text bindings except <Control-o> and <Control-v> are also available. Tk 8.3.4 added numerous bindings
from Tkcon.

Event Description

<Tab> Insert tab (/t) chanacter.

<Return> Causes the current line to be passed to the main interpreter for evaluation.

<Delete> Deletes the selected text (if any selected) or character right of the cursor.

<BackSpace> Deletes the selected text (if any selected) or character left of the cursor.

<Control-a> or <Home> Moves cursor to the start of the line after prompt.

<Control-e> or <End> Moves cursor to the end of the line.

<Control-p> or <Up> Selects the previous entry in the command history.

<Control-n> or <Down> Selects the next entry in the command history.

<Control-b> or <Left> Moves the cursor one character backwards (left) if not at prompt.

<Control-f>  or <Right> Moves the cursor one character forwards (right) if not at end of the line.

<Control-d> Deletes the character to the right of the insertion cursor. 

<Meta-d> Deletes the word to the right of the insertion cursor. 

<Control-k> Deletes all the characters to the right of the insertion cursor. 

<Control-t> Reverses the order of the two characters to the right of the insertion cursor. 

<Control-h> or 
<Meta-BackSpace>

Deletes the character to the left of the insertion cursor. 

<F9> Rebuilds console window by destroying all its children and reloading the Tcl script that
defined the console’s behaviour.

<Insert> Inserts selected text into console window

<Keypress> Insert character into entry widget. 

<<Copy>> Copy selected text to clipboard.

<<Cut>> Works the same as <<Copy>> except selected text is deleted.

<<Paste>> Paste text in clipboard to console window at cursor position.

3.7 Dialogs
Command Description 

tk_chooseColor ?option
value ...?

Creates a pop-up dialog box for the user to choose a color and returns the selected color. See 
Colors in Options and Resources for color formats. Options are:

-initialcolor  color Use color as the initial selected color. 

-parent window Makes window the parent of dialog. 

-title  string Specifies the dialog window title. 

tk_chooseDirectory 
?option value ...?

(Tk 8.3+) Creates a pop-up dialog box for the user to select a directory and returns the selected
directory. Options are:

-initialdir  directory Use directory as initial directory. Default is current working directory. If initial directory is a
relative path, the returned path will be the absolute path.

-mustexist boolean Specifies whether only existing directories can be selected. Default is false.

-parent window Makes window the parent of dialog.

-title  string Specifies the dialog window title.



tk_dialog window title
text bitmap default string
?string ...?

Creates a pop-up modial dialog box, does a local grab, and waits for a response. Window is the
top-level window to use (destroys window if it already exists). Title specifies the dialog
window title. Text specifies the message to display in the dialog. Bitmap specifies the bitmap
(See Default Bitmaps in Options and Resources) to display to the left of the message or no
bitmap if set to an empty string. Default specifies the index of the default button (0 is the
leftmost button) or no default if set to an empty string or negative number. Creates a button at
the bottom of the dialog for each string arg. When done the dialog is destroyed and the index of
the button selected is returned.

tk_getOpenFile ?option
value ...?

Creates a pop-up dialog box for the user to choose an existing filename and returns the choice.
Non-existant files are rejected with an error prompt. Options are: 

-defaultextension 
extension

String to append to filename if user enters a filename without an extension. Default is empty
string or reasonable guess based on -filetypes, if specified. 

-filetypes 
filePatternList

List of file types the user can choose from for determining which types of files to display, if
supported by the platform. Format of elements: {{description {extensions ...} ?{MacTypes
...}?} ...}

-initialdir  directory
Use directory as initial directory. Default is current working directory. If initial directory is a
relative path, the returned path will be the absolute path. 

-initialfile  fileName Specifies the default filename to be displayed in the dialog. 

-multiple (Tk 8.4+) Allows the user to choose multiple files from the Open dialog.

-message string (Tk 8.4+) Specifies a message to include in the client area of the dialog on Macs.

-parent window Makes window the parent of dialog. 

-title  string Specifies the dialog window title.

tk_getSaveFile ?option
value ...?

Creates a pop-up dialog box for the user to choose a filename and returns the choice. If an
existing file is selected, another pop-up is displayed to confirm the choice. Options are: 

-defaultextension 
extension

String to append to filename if user enters a filename without an extension. Default is empty
string or reasonable guess based on -filetypes, if specified. 

-filetypes 
filePatternList

List of file types the user can choose from for determining which types of files to display, if
supported by the platform. Format of elements: {{description {extensions ...} ?{MacTypes
...}?} ...}

-initialdir  directory
Use directory as initial directory. Default is current working directory. If initial directory is a
relative path, the returned path will be the absolute path. 

-initialfile  fileName Specifies the default filename to be displayed in the dialog. 

-message string (Tk 8.4+) Specifies a message to include in the client area of the dialog on Macs.

-parent window Makes window the parent of dialog. 

-title  string Specifies the dialog window title.

tk_messageBox ?option
value ...?

Creates a message dialog with an application-defined message, an icon and a set of buttons.
Returns the unique symbolic name of button pressed by the user. Not re-entrant, so multiple
dialogs will interfere with each other. Options are: 

-default name Make button name the default. See -type for button names. 

-detail string Specifies an auxiliary message below -message in a less emphasized font (if available).

-icon iconImage Specifies the icon to display. Options are: error , info (default), question, or warning .

-message string Specifies the message to display in the message box.

-parent window Makes window the parent of the message box.

-title  string Specifies the message box window title.

-type buttonType

Specifies which set of buttons to display. Options and symbolic names are: abortretryignore  
(abort,retry , and ignore buttons), ok (ok button), okcancel (ok and cancel buttons), 
retrycancel (retry  and cancel buttons), yesno (yes or no buttons), or yesnocancel (yes, no,
and cancel buttons). Default is ok. 



3.8 Entry Widget
Command Description 

entry pathName
?options? 

Creates an entry widget pathName with options and returns the new widget’s path name. When
invoked, pathName must not exist, but pathName’s parent should. An entry widget is used to display
and/or allow alterations to one line of text. 

Entry Options
Standard

See Common Options and Resources in Options and Resources for full details.

-background -highlightcolor -relief

-borderwidth -highlightthickness -selectbackground

-cursor -insertbackground -selectborderwidth

-disabledforeground (Tk 8.4+) -insertborderwidth -selectforeground
-exportselection -insertofftime -takefocus

-font -insertontime -textvariable

-foreground -insertwidth -xscrollcommand

-highlightbackground -justify

Entry Specific



Configure Option Resource Name Resource Class Description

-disabledbackground 
color

disabledBackground DisabledBackground (Tk 8.4+) Background color of widget when the
entry is disabled. If set to the empty string, the
normal background color is used.

-invalidcommand 
script

invalidCommand InvalidCommand (Tk 8.3+) Specifies script to eval when 
-validcommand returns 0. If set to the empty
string (default), disables option. Typically set to 
bell. See Percent Substitutions below for valid %
substitutions. (Also -invcmd).

-readonlybackground 
color

readonlyBackground ReadonlyBackground (Tk 8.4+) Background color of widget when the
entry is read-only. If set to the empty string, the
normal background color is used.

-show char show Show Show char instead of the actual characters for
each character in entry.

-state state state State State of entry. Options are: disabled (cannot
change or select contents, uses 
disabledforeground and background), normal
(can change and select contents, uses 
foreground and background), or readonly (Tk
8.4+, cannot change but can select contents).

-validate mode validate Validate (Tk 8.3+) Specifies validation mode. See 
Validation Types below for options.

-validatecommand 
script

validateCommand ValidateCommand (Tk 8.3+) Specifies script to eval when entry
input is to be validated. If set to the empty string
(default), disables option. Script must return 1 to
accept or 0 to reject new value. See Percent 
Substitutions below for valid % substitutions.
(Also -vcmd).

-width width width Width Width of entry window in font average-sized
characters. If <=0, auto size based on current 
text.

Validation Types
Type Description

none Do not perform validation (default). 

focus -validatecommand will be called when the entry receives or loses focus. 

focusin -validatecommand will be called when the entry receives focus. 

focusout -validatecommand will be called when the entry loses focus. 

key -validatecommand will be called when the entry is edited. 

all -validatecommand will be called for all above conditions. 

Percent Substitutions



Form Description

%d (Tk 8.3+) Type of action: 1 for insert, 0 for delete, or -1 for focus, forced, or textvariable validation. 

%i (Tk 8.3+) Index of char string to be inserted/deleted, if not -1. 

%P
(Tk 8.3+) The value of the entry should -validatecommand accept the new entry. When configuring to a new
textvariable, this will be the value of that textvariable. 

%s (Tk 8.3+) The current value of entry before -validatecommand accepts the new entry. 

%S (Tk 8.3+) The text string being inserted/deleted, if not an empty string {}. 

%v (Tk 8.3+) The current validation type (none, focus, focusin,focusout, key, or all). 

%V (Tk 8.3.1+) The type of validation that triggered the callback (key, focusin, focusout, forced). 

%W (Tk 8.3+) The name of the entry widget. 

Indicies or Character Positions
Some entry commands support the use of an index to locate the position of characters within the entry string starting from
0. The following are the valid forms of specifying an index:

Index 
form

Description

number A decimal number giving the position or index (starting from 0) of the desired character within the entry
string. If number < 0, the 0 is used, if number > length of text list, then end is used.

anchor Selection anchor point as set by the select from and select adjust commands.

end Character or coordinate just after last one in entry’s string.

insert Character just after the insertion cursor.

sel.first First character in selection.

sel.last Character just after last character in selection.

@number Character at the x-coordinate point in the entry’s window. If x is outside the entry window’s range, it is set to
the nearest legal value.

Entry Widget Commands 



Command Description 

pathName bboxindex
Returns a list of four elements x y w h , giving an approximate bounding box for the character
at position index . Coordinates x,y are top-left corner of character at index,w is width of char,
and h is height of char in pixels.

pathName cget option Returns the current value of the configuration option. See Entry Widget Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option to value. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options
an empty string is returned. See Entry Widget Options above for options.

pathName delete first 
?last?

Delete characters in entry’s string from position first up to but not including position last
(default is first+1 to delete 1 character). See Indicies or Character Positions above for first and 
last options.

pathName get Returns the entry’s string.

pathName icursor index Display the insertion cursor just before the character at position index. See Indicies or Char 
Positions above for index options.

pathName index index Returns the numerical index corresponding to index. See Indicies or Character Positions above
for index options.

pathName insert index 
string

Insert string just before the character at position index. See Indicies or Character Positions
above for index options.

pathName scan option 
args

Implements scanning on entry widgets. Options are:

mark  x Records x and the current view in the entry window. Typically associated with mouse button
press in widget.

dragto x Adjusts the view by 10 times the difference between the coordinate x and the last mark  x
coordinate. Used with mouse motion events to produce high speed dragging.

pathName selection
option arg

Manipulates the selection within an entry based on option. See Indicies or Char Positions
above for index options. Vaild options and args are:

adjust index Adjust the end of the selection nearest to the character given by position index to include
characters up to index and set the other end to be the anchor point. Works the same as 
selection to if selection is not in entry widget.

clear Clear the selection if it is in the widget.

from  index Sets the selection anchor point to the character just before position index.

present Returns 1 if characters are selected in the entry, 0 if not.

range start end Sets the selection to include characters from position start up to but not including position end.

to index If index < anchor point, set the selection to include characters from position index up to but not
including the anchor point. If index > anchor point, set the selection to include characters from
the anchor point up to but not including position index. If index = anchor point, no change is
made. If the selection isn’t in the entry widget, use the most recent anchor point specified for
the widget.

pathNamevalidate (Tk 8.3+) Forces the evaluation of -validatecommand by temporarily setting validate to all
and returns result.

pathName xview ?option 
args?

Query or change the horizontal entry widget view. Without any options, returns a two element
list specifying the start and end of the visible fraction (from 0 to 1) of the horizontal span of
the widget between the left and right edges of the window. Vaild options and args are:

index Adjust window view to display the character at position index at the left edge of window. See 
Indicies or Char Positions above for index options.

moveto fraction Adjust window view so that fraction (from 0 to 1) of the total width of the widget is off-screen
to the left.

scroll number pages Shift the view left (number < 0) or right (number > 0) by number screenfuls.

scroll number units Shift the view left (number < 0) or right (number > 0) by number average-width characters.



Default Entry Widget Bindings
For additional default bindings see Virtual Events in Bindings and Virtual Events.

Event Description

<Button-1> Positions the insertion cursor just before the character underneath the mouse cursor,
sets the input focus to this widget, and clears any selection in the widget.

<B1-Motion> Drags out a selection (in words if double clicked) between the insertion cursor and the
character under the mouse.

<Double-Button-1> Selects the word under the mouse and positions the insertion cursor at the beginning of
the word.

<Triple-Button-1> Selects all of the text in the entry and positions the insertion cursor before the first 
character.

<Shift-B1-Motion> Adjusts the end of the selection (in words if double clicked) that was nearest to the
mouse cursor when button 1 was pressed.

<Control-Button-1> Position the insertion cursor in the entry without affecting the selection.

<B1-Leave> Adjusts view in entry left or right more quickly.

<B1-Enter> Stops adjustment of view in entry left or right more quickly.

<Button-2> Paste selection into the entry at the position of the mouse cursor.

<B2-Motion> Adjusts view in entry by scrolling left or right.

<Left> or <Control-b> Moves the insertion cursor one character back (left), clears any selection in the entry,
and sets the selection anchor.

<Right> or <Control-f> Moves the insertion cursor one character forward (right), clears any selection in the
entry, and sets the selection anchor.

<Shift-Left> Move the insertion cursor one character back (left) and extend the selection to include
the new character.

<Shift-Right> Move the insertion cursor one character forward (right) and extend the selection to
include the new character.

<Control-Left>  or <Meta-b> Move the insertion cursor back (left) by one word, clears any selection in the entry, and
sets the selection anchor.

<Control-Right>  or <Meta-f> Move the insertion cursor forward (right) by one word, clears any selection in the
entry, and sets the selection anchor.

<Shift-Control-Left> Move the insertion cursor back (left) by one word and also extend the selection.

<Shift-Control-Right> Move the insertion cursor forward (right) by one word and also extend the selection.

<Home> or <Control-a> Move the insertion cursor to the beginning of the entry and clear any selection in the 
entry.

<Shift-Home> Move the insertion cursor to the beginning of the entry and also extends the selection to
that point.

<End> or <Control-e> Move the insertion cursor to the end of the entry and clear any selection in the entry.

<Shift-End> Move the insertion cursor to the end of the entry and also extends the selection to that 
point.

<Select> or <Control-Space> Set the selection anchor to the position of the insertion cursor without affecting the 
selection.

<Shift-Select> or 
<Shift-Control-Space>

Adjusts the selection to the current position of the insertion cursor, if there is one,
otherwise it selects from the anchor to the insertion cursor. 

<Control-slash> Selects all the text in the entry.

<Control-backslash> Clears any selection in the entry.

<Delete> Deletes the selection, if there is one, otherwise it deletes the character to the right of the
insertion cursor. 

<BackSpace> or <Control-h> Deletes the selection, if there is one, otherwise it deletes the character to the left of the
insertion cursor. 

<Control-d> Deletes the character to the right of the insertion cursor.

<Meta-d> Deletes the word to the right of the insertion cursor.



<Control-k> Deletes all the characters to the right of the insertion cursor.

<Control-t> Reverses (transposes) the order of the two characters to the right of the insertion cursor.

<Keypress> Insert character into entry widget.

<<Copy>> Copy selected text to clipboard.

<<Cut>> Works the same as <<Copy>> except selected text is deleted.

<<Paste>> Paste text in clipboard to console window at cursor position.

3.9 Fonts
Command Description 

font actual font ?-displayof 
window? ?option?

Returns actual value for font’s option on window’s (default is main window) display.
Without option, a list of all option and value pairs is returned. See Font Descriptions and 
Font Options below for font and option values, respectively. 

font configure fontname
?option? ?value? ?option
value ...?

Sets each option to specified value for fontname. Without value, the current value of option
is returned. Without option, a list of all option and value pairs is returned. For multiple
options an empty string is returned. See Font Options below for options. 

font create ?fontname?
?option value ...?

Create a new font fontname and returns the font name. Without fontname default naming
convention is font# where # is an integer. See Font Options below for options. 

font delete fontname
?fontname ...?

Delete all of the specified fonts. Does not remove font if it is in use by a widget until all
instances are released. 

font families ?-displayof 
window ?

Returns a list of all font families defined on window’s display (default is main window). 

font measure font 
?-displayof window? text

Returns width of string text (except /n and /t) in pixels using font in window (default is main
window). See Font Descriptions below for font.

font metrics font 
?-displayof window? 
?option?

Returns value of font’s metric option on window’s (default is main window) display.
Without option, a list of all option and value pairs is returned. See Font Metrics and Font 
Options below for valid font metrics andoption values, respectively.

font names Returns list of currently defined fonts with names. 

Font Description
The valid forms for the font options above are as follows. The form used is the first match meeting the match criteria.



#
Font 
name

Match
Description

1. fontname
Exact 
only

Name of font created using font create. When used, won’t cause error even if corresponding
attrributes are invalid. If font with exact attributes can’t be displayed, another close font will be
substituted automatically.

2. systemfont
Exact 
only

Name of platform-specific font interpreted by graphics server. See Platform Specific Fonts below.

3.
family
?size?
?style ...?

Closest 
match

A list where the first element the font family name, the optional second element is desired size (See 
-size in Font Options), and the optional style options are: normal or bold, roman or italic  
,underline, and overstrike.

4.
X-font 
name

Closest 
match

A Unix-centric font name of the form of: 
-foundry-family-weight-slant-setwidth-addstyle-pixel-point-resx-resy-spacing-width-charset-encoding
. The "* " character may be used to skip individual fields and an individual "*" must be used for each
skipped field except at the end.

5.

option
value
?option
value ...?

Closest 
match

A list of option and value pairs specifying the font options in the same format as font create . See 
Font Options below for options.

Font Options
Option Description

-family name
Specifies case-insensitive font family name . See Default Cross-Platform Fonts below for supported 
names. 

-size size
Specifies font size in points (or pixels if negative). If invalid, a close size will be used. A size of 0 uses
the platform specific default. 

-weight weight Specifies font thickness as either normal (default) or bold. 

-slant slant Specifies whether the font is roman (default) or italic . 

-underline 
boolean

Specifies whether font is underlined or not (default). 

-overstrike 
boolean

Specifies whether font is overstriked or not (default). 

Font Metrics
The valid font metric options are as follows. The baseline of a font is the horizontal line where the bottom of most letters
(without descenders) line up.

Metric Description

-ascent Returns the distance in pixels that the tallest letter sticks up above the baseline of the font, plus any extra blank
space added by the designer of the font.

-descent Returns the distance in pixels that any letter sticks down below the baseline of the font, plus any extra blank
space added by the designer of the font.

-linespaceThe vertical distance in pixels between the baseline of two lines of text using the same font so that characters
do not overlap. Usually this is the sum of the ascent above the baseline line plus the descent below the 
baseline.

-fixed Returns a 1 is the font is fixed-width or 0 if it is proportionally-spaced.



Default Cross-Platform Fonts
Default font family names with fonts guaranteed to be supported by Tk denoted by (*).

Avant Garde Courier New New Century Schoolbook Times (*) 

Arial Geneva New York Times New Roman
Bookman Helvetica (*) Palatino Zapf Chancery
Courier  (*) Monaco Symbol Zapf Dingbats

System Specific Fonts
X Windows:

All valid X font names, including those listed by xlsfonts, are available.

MS Windows:

ansi ansifixed device oemfixed system systemfixed

Mac:

system application

3.10 Frame Widget
Command Description 

frame pathName 
?options?

Creates a frame pathName with options and returns the new widget’s path name. A frame widget is
used as a spacer or container for complex window layouts.

Frame Options
Standard

See Common Options and Resources in Options and Resources for full details.

-borderwidth -highlightcolor -pady  (Tk 8.4+) 

-cursor -highlightthickness -relief 

-highlightbackground -padx (Tk 8.4+) -takefocus

Frame Specific

See Coordinates in Options and Resources for screen unit options.



Configure 
Option

Resource 
Name

Resource 
Class

Description

-background 
color

background Background Same as standard -background expect if set to empty string, the widget
will not display or allocate a colormap entry for the background or border 
color. 

-class name
class Class Specifies class name to use in querying the option database and for

bindings. Can not be changed with configure command. 

-colormap 
colormap

colormap Colormap Specifies colormap (default is same as parent) to use for the window where 
colormap can be new (allocate new colormap) or the name of another
window on same display with same visual. Can not be changed with 
configure command. 

-container 
boolean

container Container Specifies whether the frame will be a container to embed another
application. Can not be changed with configure command. 

-height height height Height Height of frame in screen units.

-visual visual
visual Visual Specifies the visual to use for the window. Default is the same as the

parent. See Screen or Window Visuals in Toplevel for visual options. Can
not be changed with configure command. 

-width  width width Width Width of frame in screen units.

Frame Commands
Command Description 

pathName cget option Returns the current value of the configuration option. See Frame Options above for options.

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option tovalue. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty string is returned. See Frame Options above for options.

3.11 Geometry Mangement
Grid
Geometry manager that arranges widgets in a grid (rows and columns) inside of another window, called the geometry
master (or master window). See Coordinates in Options and Resources for screen unit options. Don’t pack and grid
children into the same widget (same level) unless geometry propagation is turned off.

Command Description 

grid  slave ?slave ...?
?option value ...?

Same as grid configure slave.

grid anchor master
?anchor? 

(Tk 8.5+) Specifies how to place the grid within the master when no row/column has any 
weight. Valid anchor values: n, ne, e, se ,s ,sw ,w ,nw, or center (default). 

grid bbox master ?column
row? ?column2 row2?

Returns a 4 element list describing the bounding box in pixels of the space occupied by area
spanning between given cells. With only column and row , returns bounding box for
specified cell (top left cell is 0). Without options, returns bounding box of grid as a list of
integers (column1 row1 column2 row2).

grid columnconfigure
master index ?option value 
...?

Set or query column properties of index column(s) in grid master. Index may be a list of
column indicies. Without value, the current value is returned for option. Witout option, all
current option and value pair settings are returned. In Tk 8.5+, index can be all in order to
apply to all columns.



-minsize size Minimum size of index column(s) in screen units. 

-pad amount
Padding in screen units to add to the largest window contained completly in column(s) index
when grid requests their sizes. 

-uniform  value (Tk 8.4+) Places the column in a uniform group with other columns that have the same value
for -uniform . Not used if set to empty value.

-weight int
Relative weight for apportioning extra space among columns. Columns with a weight of 0,
will not deviate from requested size. 

grid configureslave ?slave
...? ?option value ...?

Set or query how slave windows should be managed by the grid geometry master. Unless the 
slave was previously managed, options not specified will be set to their default values. See 
Grid Relative Placement below for alternate slave options. 

-column n 
Insert the slave so that it occupies the n th column in the grid. Default is just to right of
previously specified slave or 0 if none. Column numbers start with 0. Each use of "x"
preceding slave increments the column position by 1.

-columnspan n Insert the slave so that it occupies n columns (default is 1) in the grid. Each use of "-"
following the slave name increments the column span by one.

-in other Insert the slave(s) in the master window given by other (default is first slave’s parent 
window).

-ipadx amount Specifies amount (default is 0), in screen units, of horizontal internal (added to border)
padding to leave on each side of slave(s).

-ipady amount Specifies amount (default is 0), in screen units, of vertical internal (added to border) padding
to leave at the top and bottom of slave(s).

-padx amount Specifies horizontal external (outside of border) padding amount (default is 0), in screen
units to leave on each side of slave(s). In Tk 8.4+, amount may be a two element list
consisting of left and right padding values.

-pady amount Specifies vertical external (outside of border) padding amount (default is 0), in screen units
to leave at the top and bottom of slave(s). In Tk 8.4+, amount may be a two element list
consisting of top and bottom padding values.

-row n Insert the slave so that it occupies the nth row in the grid. Default is same as previously
specified slave or first unoccupied row if none. Row numbers start with 0.

-rowspan n Insert the slave so that it occupies n rows (default is 1) in the grid. If the next grid  command

contains "̂ " characters for the same row as slave(s), then the rowspan of slave is extended
by one. The number of ^’s in a row must match the number of columns spanned by the slave
above it.

-sticky style Specifies where to position a slave within the cell if the cell is larger than the requested
dimensions. Style can be zero or more positions (n, s,e or w) with optional space and comma
separators. If both n and s (or e and w) are specified, the slave will be stretched to fill the
entire height (or width) of its cavity. The default or when set to an empty string, is to center
the slave within the cell.

grid forgetslave ?slave ...?Removes and unmaps each slave from grid and forgets their configuration options. 

grid infoslave
Returns a list of option and value pairs describing the configuration state of slave. The first
two elements are "-in master" where master is the slave’s master. 

grid locationmaster x y
Returns column and row containing screen units x and y in master. Returns -1 if x or y is
above or to the left of the grid. 

grid propagatemaster 
?boolean?

Specifies whether master tries to resize its slave windows to fit grid (default) or not. Without 
boolean, returns current setting. 

grid removeslave ?slave 
...?

Removes and unmaps each slave from grid and remembers their configuration options. 

grid rowconfiguremaster
index ?option value ...?

Set or query row properties of index row(s) in grid master. Index may be a list of row
indicies. Without value, the current value is returned for option. Witout option, all current 
option and value pair settings are returned. See Grid Relative Placement below for alternate 
slave options. In Tk 8.5+, index can be all in order to apply to all rows. 



-minsize size Minimum size of index row(s) in screen units. 

-pad amount
Padding in screen units to add to the largest window contained completly in row(s) 
indexwhen grid requests their sizes. 

-uniform  value (Tk 8.4+) Places the row in a uniform group with other rows that have the same value for 
-uniform . Not used if set to empty value.

-weight int
Relative weight for apportioning extra space among rows. Rows with a weight of 0, will not
deviate from requested size. 

grid sizemaster Returns size of grid in columns and rows for master. 

grid slavesmaster 
?options?

Returns a list of the slaves in master for the specified column and/or row . Without options,
all slaves are returned. 

-column column Only return slaves in colum column. 

-row row Only return slaves in row row. 

Grid Relative Placement 
The grid  command supports a limited capability to create layouts without specifying the row and column information for
each slave. In this case, grid  chooses default values for column, row, columnspan, and rowspan at the time the slave is
managed based on the current grid layout, the position of the slave relative to other slaves in the same grid  command, and
the presence of the symbols -,x, and ̂  with the slave names. When the symbol is repeated, the effect is also repeated.

Symbol Effect

- Increases columnspan of slave to the left. 

x Leave an empty column. 

^ Extends the rowspan of slave above. 

Pack
Geometry manager that arranges the children (slaves) of a parent (master) by packing them in order (defined by packing
list) in the packing cavity around the edges of the parent. The packer allocates a rectangular parcel for the slave along the
side of the cavity given by the slave’s -side option. See Coordinates in Options and Resources for screen unit options.



Command Description 

pack slave ?slave
...? ?options?

Same as pack configure.

pack configure 
slave ?slave ...?
?option value ...?

Sets how slave windows should be managed by the packer. Valid options are:

-after sibling Insert slaves after widget sibling in the packing order of sibling’s master.

-anchor anchor Where to position slave in master window when smaller then the allocated space. Valid anchor
values: n, ne, e, se ,s ,sw ,w ,nw, or center (default).

-before sibling Insert slaves before widget sibling in the packing order of sibling’s master.

-expand boolean Specifies whether the slaves should expand to consume extra space in their master or not (default).

-fill style Specifies whether slaves should be stretched if the allocated space is larger than the requested
dimensions. Options are: none (use requested dimensions plus internal padding), x (stretch slave
horizontally to fill allocated space with room left over for padding), y (stretch slave vertically to fill
allocated space with room left over for padding), or both (do both x and y stretching).

-in master Insert slave at the end of the packing order in window master.

-ipadx amount Specifies amount of horizontal internal padding to leave on each side of slave in screen units (default
is 0).

-ipady amount Specifies amount of vertical internal padding to leave on each side of slave in screen units (default is 
0).

-padx amount Specifies amount of horizontal external padding to leave on each side of slave in screen units
(default is 0). In Tk 8.4+, amount can be a list of two values for the left and right side padding. 

-pady amount Specifies amount of vertical external padding to leave on each side of slave in screen units (default is
0). In Tk 8.4+, amount can be a list of two values for the top and bottom side padding.

-side side Specifies which side of the master the slave(s) will be packed against. Options are left, right ,top, or 
bottom.

pack forget slave
?slave ...? Removes and unmaps each slave from the packing order and forgets their configuration options.

pack info slave Returns a list of option and value pairs describing the configuration state of slave . The first two
elements are "-in master" where master is the slave’s master.

pack propagate 
master ?boolean?

Specifies whether window master tries to resize its slave windows for geometry propagation
(default) or not. Without boolean, returns current setting.

pack slaves master Returns a list of the slaves in the packing order for window master. If none, empty string is returned.

Place
Geometry manager for fixed placement, where the size and location of slave windows is user specified within another
window called the master. The placer also provides rubber-sheet placement, where the user specifies the size and location
of the slave in terms of the dimensions of the master, so that the slave changes size and location in response to changes in
the size of the master. The placer supports mixing both styles of placement for slaves.



Command Description 

placewindow option
value ?option value ...?

Same as place configure.

place configure window
?option? ?value?
?option value ...?

Change the configuration option tovalue for the slave given by window. Without value, a list
describing option is returned. Without option, a list of all available options for pathName is
returned. For multiple options an empty string is returned. Valid options are: 

-anchor anchor Anchor specifies which point of window is to be positioned at coordinate x,y as defined by 
-relx, -rely ,-x,and -y. Valid anchor values: n, ne , e,se,s,sw,w,nw (default), orcenter.

-bordermode style Specifies the degree to which borders within the master are used in determining the placement
of the slave. Options are: inside (default) where placer only uses innermost area of master
inside any border, outside where placer considers area to include border, or ignore where
placer ignores borders and like X windows includes internal border but not external border.

-height size Specifies the height, including border, forwindow in screen units. Default or when set to empty
string is to auto size.

-in master 
Specifes the path name of the window relative to which window is to be placed. Master must be
the parent or descendent window’s parent and in the same top level window. Default is to use 
window’s parent.

-relheight size Specifies the floating point (0 to 1) height relative to the master. If used with -height, both
values are summed before use.

-relwidth size Specifies the floating point (0 to 1) width relative to the master. If used with -width , both
values are summed before use.

-relx location Specifies the floating point x-coordinate of the anchor point for window relative to the master,
where 0 is the left edge and 1 is the right edge. Location need not lie within the bounds of the
master window. If used with -x, both values are summed before use.

-rely location Specifies the floating point y-coordinate of the anchor point for window relative to the master,
where 0 is the top edge and 1 is the bottom edge. Location need not lie within the bounds of the
master window. If used with -y, both values are summed before use.

-width size Specifies the width, including border, for window in screen units. Default or when set to empty
string is to auto size.

-x location Specifies the x-coordinate in screen units of the anchor point for window in master.Location
need not lie within the bounds of the master window.

-y location Specifies the y-coordinate in screen units of the anchor point for window in master. Location
need not lie within the bounds of the master window.

place forgetwindow Placer will stop managing and unmap window. 

place infowindow
Returns a list of option and value pairs describing the configuration state of window. In Tcl
8.4.2+, the first two elements are "-in master" where master is the window’s master. 

place slavesmaster Returns a list of the slaves for window master. If none, empty string is returned. 

3.12 Images
Image Commands



Command Description 

image create type 
?name? ?options 

value ...?

Creates new image name (default is image# where # is an integer) of type with options and returns
the path name. If name already exists, it is replaced. Type can be either bitmap or photo. See Bitmap
Image Options or Photo Image Options below for options. Don’t use the same name as an existing
command, or the command will be overwritten.

image delete
?name ...?

Deletes each of the image names. If an image is in use by a widget, it won’t be deleted until all
instances are released. Deleteing a widget using an image does not delete the image.

image height name Returns height of image name in pixels. 

image inuse name (Tk 8.4+) Returns 0 if image name is in use by a widget, or 1 if not.

image names Returns a list of of all the existing image names. 

image type name Returns the type (bitmap or photo ) of image name. 

image types Returns a list of valid image types (Tk defaults are: bitmap and photo). 

image width name Returns width of image name in pixels. 

The Bitmap Image Type
A bitmap is an image whose pixels can be either one of two colors or transparent. A bitmap image consists of identically
sized background color, foreground color, source, and mask bitmaps. Each bitmap consists of 0/1 values in a rectangular
array of pixels. If the mask for a pixel is 0, the image displays nothing (transparent effect) otherwise the source bitmap
pixel is used. If the source for a pixel is 1, the foreground color is shown, otherwise the background color is shown. The
options for image create bitmap are:

Bitmap Image 
Options

Description

-background color
Set background color for bitmap. If set to an empty string, the background pixels will be 
transparent. 

-data string
Specify contents of bitmap in X11 bitmap program format as a string. Takes precedence
over -file. 

-file fileName
Use fileName as the source of the bitmap image. The bitmap must be in X11 bitmap
program format. 

-foreground color Set foreground color for bitmap. 

-maskdata string
Specify contents of mask in X11 bitmap program format as a string. Takes precedence
over -maskfile. 

-maskfile fileName Use fileName as the source of the mask image. The bitmap must be in X11 bitmap
program format.

Bitmap Image Command Description 

imageName cgetoption Returns the current value of the configuration option for image imageName. See Bitmap
Image Options above for options.

imageName configure?option?
?value? ?option value ...? 

Change the configuration option for the image imageName to value. Without value, a list
describing the option is returned. Without option, a list describing all of the available
options for imageName is returned. For multiple options an empty list is returned. Option
may have any of the values accepted by the image create bitmap command. See Bitmap
Image Options above for options.



The Photo Image Type
A photo is an image whose pixels can display any color or be transparent. A photo image is stored internally in full color
(32 bits per pixel), and is displayed using dithering if necessary. At present, standard Tk only supports the GIF, PPM, and
PGM formats without an extension. The IMG extension adds support for: BMP, XBM, XPM, GIF (with transparency, but
without LZW), PNG, JPEG, TIFF, and postscript. A photo image is transparent in regions where no image data has been
supplied or where it has been set transparent by the transparency set subcommand. The options for image create photo 
are:

Photo
Image 
Options

Description

-data string Specify contents of image as a string in a supported format. The string can contain base64 encoded data
or binary data. Takes precedence over -file. Supports PGM and PPM in Tk 8.4.7+.

-format 
formatName

Specify format for data specified with the -data or -file options. The gif, pgm, and ppm formats are
supported for reads and gif87, gif89, pgm, and ppm formats are supported for writes. 

-file fileName Use fileName as the source of the photo image for a supported format. 

-gamma value
(Tk 8.4+) Correct the colors allocated for displaying this image for a non-linear display with the
specified gamma exponent value. Value must be > 0, default is 1 (no correction). Value > 1 will make
image lighter, Value < 1 will make image darker.

-height height
Specifies the height of the image, in heightpixels. Use 0 (default) to allow the image to expand or
shrink vertically to fit the data. 

-palette 
paletteSpec

Set the resolution of the color cube (number of colors) to be allocated for image. String paletteSpec can
be a single decimal number to specify the number of shades of gray to use (monochrome), or three
decimal numbers separated by slashes (/), to specify the number of shades of red, green and blue to use, 
respectively. 

-width width
Specifies the width of the image, in widthpixels. Use 0 (default) to allow the image to expand or shrink
horizontally to fit the data. 

The commands that write data to the image can expand the size of the image if necessary unless -width  and/or -height are
specified to prevent changing the image size. The following are the valid commands for photo images:

Photo Image Command Description 

imageName blank Blanks the image so has no data and is completely transparent. 

imageName cgetoption Returns the current value of the configuration option for image imageName. See Photo
Image Options above for options.

imageName configure ?option?
?value? ?option value ...? 

Change the configuration option for the image imageName to value. Without value, a
list describing the option is returned. Without option, a list describing all of the available
options for imageName is returned. For multiple options an empty string is returned. See 
Photo Image Options above for options.

imageName copy sourceImage
?option value ...?

Copy a region from sourceImage to imageName using given options. 



-compositingrule rule (Tk 8.4+) Specifies how transparent pixels in sourceImage are combined with 
imageName. Rule overlay (default) specifies the sourceImage should be overlayed on 
imageName. Rule set specifies imageName be replaced by sourceImage.

-from x1 y1 x2 y2

Specifies rectangular sub-region (default is whole image) of the image in sourceImage
to copy into imageName where (x1,y1) is the top left and (x2,y2) is the bottom right (or
bottom right corner if not specified). Includes the left and top edges but not the bottom
or right edges.

-shrink Will shrink image in sourceImage so it fits within the current bottom-right corner of 
imageName without affecting the image create settings for -height or -width .

-subsample x y Reduces source region of sourceImage by using only every xth and yth pixel in
respective direction when copying to imageName. Negative values will cause image to
be flipped about the respective axis. If not specified, y defaults to same value as x.

-to x1 y1 x2 y2 Specifies rectangular sub-region of imageName into which sourceImage will be copied
with tiling if necessary, where (x1,y1) is the top left and (x2,y2) is the bottom right (or
bottom right corner if not specified). Without x2 and y2, the default is (x1,y1) plus size
of sourceImage.

-zoom x y
Magnifies source region in sourceImage by x and y in respective direction in 
imageName. If not specified, y defaults to same value as x. Both x and y must be > 0. 

imageName data ?option value 
...?

(Tk 8.3+) Returns image data in the form of a string. Options are:

-background color If specified, all transparent pixels will be replaced with color.

-format  formatName Specify format for imageName (default is auto select). The GIF , PGM, PPM formats
are supported.

-from  x1 y1 x2 y2 Specifies rectangular sub-region (default is whole image) of the image in imageName to
return where (x1 ,y1) is the top left and (x2,y2) is the bottom right (or bottom right
corner if not specified). Includes the left and top edges but not the bottom or right edges.

-grayscale Image data will be returned in grayscale format.

imageName getx y Returns a 3 element list representing the RGB color components of the pixel at (x,y) in 
imageName. 

imageName putdata ?option
value ...?

Inserts data from string data into imageName using given options. 

-format  formatName (Tk 8.3+) Specify format for data (default is auto select). The GIF , PGM, PPM formats
are supported.

-from  x1 y1 x2 y2 (Tk 8.3+) Specifies rectangular sub-region (default is whole image) of the image in data
to put into imageName where (x1,y1) is the top left and (x2,y2) is the bottom right (or
bottom right corner if not specified). Includes the left and top edges but not the bottom
or right edges.

-shrink (Tk 8.3+) Will shrink image in data so it fits within the current bottom-right corner of 
imageName without affecting the image create settings for -height or -width .

-to x y Specifies the top left corner (x,y) of the region (default is 0,0) within imageName, into
which the pixels from the image in data will be put. In Tk versions up to 8.2.3, args are 
x1 y1 x2 y2.

imageName readfileName
?option value ...?

Reads image data from fileName into imageName using given options. 

-format formatName Specify format for fileName (default is auto select). The GIF , PGM, PPM formats are 
supported.

-from x1 y1 x2 y2

Specifies rectangular sub-region (default is whole image) of the image in fileName to
read into imageName where (x1,y1) is the top left and (x2,y2) is the bottom right (or
bottom right corner if not specified). Includes the left and top edges but not the bottom
or right edges.

-shrink Will shrink image from fileName so it fits within the current bottom-right corner of 
imageName without affecting the image create settings for -height or -width .

-to x y Specifies the top left corner (x,y ) of the region (default is 0,0) within imageName, into
which the pixels from the image in fileName will be put.



imageName redither Redither the image. Used when multiple pieces are used for an image and dithering isn’t 
exact. 

imageName transparency 
subcommand ?arg ...?

(Tk 8.4+) Allows examination and manipulation of transparency info. Subcommands
and args are:

get x y Returns a boolean indicating if the pixel at (x,y) is transparent.

set x y boolean If true, make the pixel at (x,y) transparent or opaque if false.

imageName write fileName
?option value ...?

Writes image data from imageName into file fileName. 

-background color (Tk 8.3+) If specified, all transparent pixels will be replaced with color.

-format formatName option Specify format for fileName (default is auto select). The supported formatNames are: 
GIF87, GIF89, PGM, or PPM.

-from x1 y1 x2 y2

Specifies rectangular sub-region (default is whole image) of the image in imageName to
write to fileName where (x1,y1) is the top left and (x2,y2) is the bottom right (or bottom
right corner if not specified). Includes the left and top edges but not the bottom or right 
edges.

-grayscale (Tk 8.3+) Image data will be written in grayscale format.

3.13 Label Widget
Command Description 

label pathName
?options? 

Creates a label widget pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should. A label widget is used to display a text string,
bitmap, or image. Multiple fonts within the text string are not supported. 

Label Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground (Tk 8.3.2+) -disabledforeground (Tk 8.3.2+) -padx

-activeforeground (Tk 8.3.2+) -font -pady 

-anchor -foreground -relief 

-background -highlightbackground -takefocus 

-bitmap -highlightcolor -text  

-borderwidth -highlightthickness -textvariable 

-compound (8.4+) -image -underline 

-cursor -justify -wraplength 

Label Widget Specific

See Coordinates in Options and Resources for screen unit options.



Configure 
Option

Resource 
Name

Resource 
Class

Description

-height 
height

height Height Height of label widget (default is to auto size) in screen units (bitmap or image) or
lines of text (text).

-state state state State (Tk 8.3.2+) State of label widget. Options are: active (use activeforeground and 
activebackground), disabled (use disabledforeground and background), 
normal (use foreground and background).

-width  
width

width Width Width of label widget (default is to auto size) in screen units (bitmap or image) or
characters (text).

Label Widget Commands
Command Description 

pathName cget option Returns the current value of the configuration option. See Label Widget Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option tovalue. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty string is returned. See Label Wiget Options above for options.

3.14 Labelframe Widget
Command Description 

labelframe 
pathName
?options? 

(Tk 8.4+) Creates a labelframe widget pathName with options and returns the new widget’s path name.
When invoked, pathName must not exist, but pathName’s parent should. A labelframe widget is used
as a container for complex window layouts and has the featues of a frame plus the capability to display
a label. 

Labelframe Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-borderwidth -highlightbackground -pady
-cursor -highlightcolor -relief
-font -highlightthickness -takefocus
-foreground -padx -text

LabelFrame Specific

See Coordinates in Options and Resources for screen unit options.



Configure 
Option

Resource 
Name

Resource 
Class

Description

-background 
color

background Background Same as standard -background expect if set to empty string, the widget
will not display or allocate a colormap entry for the background or border 
color. 

-class name
class Class Specifies class name to use in querying the option database and for

bindings. Can not be changed with configure command. 

-colormap 
colormap

colormap Colormap Specifies colormap (default is same as parent) to use for the window
where colormap can be new (allocate new colormap) or the name of
another window on same display with same visual. Can not be changed
with configure command. 

-container 
boolean

container Container Specifies whether the frame will be a container to embed another
application. Can not be changed with configure command. 

-height height height Height Height of frame in screen units.

-labelanchor 
anchorPos

labelAnchor LabelAnchor Specifies where to position label in widget. Valid anchorPos values: n, 
ne,en ,e,es,se,s,sw,ws,w,wn , and nw (default).

-labelwidget 
pathName

labelWidget LabelWidget Widget to use as the label in the frame. Overrides -text option. Widget
must already exist.

-visual visual
visual Visual Specifies the visual to use for the widget if different from parent. See 

Screen or Window Visuals in Toplevel for visual options. Can not be
changed with configure command. 

-width  width width Width Width of labelframe in screen units.

Labelframe Commands
Command Description 

pathName cget option Returns the current value of the configuration option. See Labelframe Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option tovalue. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty list is returned. See Labelframe Options above for options.

3.15 Listbox Widget
Command Description 

listbox 
pathName
?options? 

Creates a listbox widget pathName with options and returns the new widget’s path name. When
invoked, pathName must not exist, but pathName’s parent should. A listbox widget is used to display a
list of strings, one per line. Listbox widgets are only one column.

Listbox Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.



-background -foreground -selectborderwidth

-borderwidth -highlightbackground -selectforeground

-cursor -highlightcolor -setgrid

-disabledforeground (Tk 8.4+) -highlightthickness -takefocus
-exportselection -relief -xscrollcommand

-font -selectbackground -yscrollcommand

Listbox Widget Specific

Configure 
Option

Resource 
Name

Resource 
Class

Description

-activestyle 
style

activeStyle ActiveStyle (Tk 8.4+) Style in which to draw active element. Style options are: dotbox to
show a focus ring around the active element, none, or underline (default) to
underline the active element.

-heightheight height Height Height of window (0 or default is to auto size) in lines of text.

-listvariable 
var

listVariable Variable (Tk 8.3+) Specifies name of variable var which contains a list to be displayed
in the listbox. Automatically updates listbox when var is altered. Unsetting 
var while in use by the listbox, will be ignored. 

-selectmode 
mode

selectMode SelectModeSpecifies selection manipulation mode. Mode can be: single where only 1
element can be selected at a time, browse (default) where only 1 element can
be selected or dragged at a time, multiple  where multiple elements can be
selected without affecting other selections, or extended where multiple
elements can be selected but other selected elements become deselected.

-state state state State (Tk 8.4+) State of label widget. Options are:disabled where items cannot be
inserted or deleted (use disabledforeground and background) or normal
(use foreground and background).

-width  width width Width Width of window (0 or default is to auto size) in characters (for proportional
fonts, char size is for character "0").

Indicies or Character Positions
Some listbox commands support the use of an index to locate an element within the listbox or a character within a listbox
element starting at 0. The following are the valid forms of specifying an index :

Index 
form

Description

number A decimal number giving the index (starting from 0) of the element in the listbox. If number < 0, the 0 is used,
if number > number of elements, then end is used.

active Indicates the element that has the location cursor.

anchor Selection anchor point as set by the selection anchor command.

end Indicates the end of the listbox. Usually this is last element in the listbox, but for a few commands such as 
index and insert it refers to the element just after the last one.

@x,y Indicates the element that covers coordinate x,y (pixel units) in the listbox window. If outside the window, it is
set to the nearest legal value.

Listbox Widget Commands
For commands that use indicies, see Indicies or Character Positions above for options.

Command Description 



pathName activate index Sets active element (for by keybaord bindings) in listbox to index. If outside the listbox range,
it is set to the nearest element.

pathName bboxindex

Returns a list of four elements x y w h , giving an approximate bounding box of the text in
element index . Coordinates x,y are top-left corner of text at index ,w is width of text, and h is
height of text in pixels. Returns an empty string if element index is not visible on the screen or
is invalid.

pathName cget option Returns the current value of the configuration option. See Listbox Widget Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option to value. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options
an empty string is returned. See Listbox Widget Options above for options.

pathName curselection Returns a list of numerical indices for all of the elements in the listbox that are currently
selected or empty string if none.

pathName delete first 
?last?

Deletes one or more elements in listbox from index first to index last. Without last only
element at index first is deleted.

pathName get first ?last? Returns a list of the contents of listbox elements from index first to index last (default is first).
Returns an empty string for invalid indicies.

pathName index index Returns the numerical index corresponding to index.

pathName insert index
?element ...?

Insert zero or more elements just before the element at index. If index is end, new elements
are added to the end of the list.

pathName itemcget index 
option

(Tk 8.3+) Returns the current value of the configuration option for the element at index. See 
Listbox Widget Options above for options.

pathName itemconfigure
index ?option? ?value?
?option value ...?

(Tk 8.3+) Change the configuration option for element at index to value. Without value, a list
describing option is returned. Without option, a list of all available options is returned. For
multiple options an empty list is returned. Supported options are: -background, -foreground, 
-selectbackground, and -selectforeground.

pathName nearest y Returns the index of the visible element nearest coordinate y.

pathName scan option 
args

Implements scanning on listbox widgets. Options are:

mark  x y Records x, y, and the current view in the listbox window. Typically associated with mouse
button press in widget.

dragto x y Adjusts the view by 10 times the difference between the coordinate x,y and the last mark  x ,y
coordinate. Used with mouse motion events to produce high speed dragging.

pathName see index Adjust the view in the listbox so that the element at index is visible in the center of the listbox.
If the element is near the beginning or end then the element will be visible at the edge.

pathName selection
option arg

Manipulates the selection within a listbox based on option. Vaild options and args are:

anchor index Sets the selection anchor to the element at index. If index is invalid, the element closest to 
index will be used.

clear first ?last? Clears from the selection the elements between indicies first and last (default is first),
inclusive, without affecting the selection state of elements outside the range.

includes index Returns 1 if the element at index is currently selected, 0 if not.

set first ?last? Selects all of the elements between indicies first and last (default is first), inclusive, without
affecting the selection state of elements outside the range.

pathNamesize Returns the total number of elements in the listbox.

pathName xview ?option 
args?

Query or change the horizontal listbox view. Without any options, returns a two element list
specifying the start and end of the visible fraction (from 0 to 1) of the horizontal span of the
widget between the left and right edges of the window. Vaild options and args are:

index Adjust window view to display the character at position index at the left edge of window.

moveto fraction Adjust window view so that fraction (from 0 to 1) of the total width of the listbox widget is
off-screen to the left.

scroll number pages Shift the view left (number < 0) or right (number > 0) by number screenfuls.

scroll number units Shift the view left (number < 0) or right (number > 0) by number average-width characters
(proportional uses "0").



pathName yview ?option 
args?

Query or change the vertical listbox view. Without any options, returns a two element list
specifying the start (element at top of window) and end (element just after element at the
bottom of window) of the visible fraction (from 0 to 1) of the vertical span of the widget
between the top and bottom edges of the window. Vaild options and args are:

index Adjust window view to display the element at index at the top edge of window.

moveto fraction Adjust the view in the window so that element at fraction (from 0 to 1) is at the top edge of
the window.

scroll number pages Shift the view up (number < 0) or down (number > 0) by number screenfuls.

scroll number units Shift the view up (number < 0) or down (number > 0) by number lines.

Default Listbox Widget Bindings
Event Description

<Button-1> Make the element under the mouse pointer the active element.

<B1-Motion> If the selection mode is extended, extend the selection.

<Shift-1> If the selection mode is extended, modifies the selection to consist of the elements between the
anchor and the element under the mouse pointer, inclusive.

<Control-1> If the selection mode is extended, set anchor to element under the mouse pointer and toggle its
selection state. The selection state of other elements isn’t changed.

<Control-B1-Motion> If the selection mode is extended, the selection state of all elements between the anchor and the
element under the mouse is set to match that of the anchor element; the selection state of all
other elements remains what it was before the toggle operation began.

<B1-Leave> Adjusts view in listbox in direction of mouse pointer more quickly.

<B1-Enter> Stops quick adjustment of view in listbox in direction of mouse pointer.

<ButtonRelease-1> Stops quick adjustment of view in listbox in direction of mouse pointer and activates current
listbox entry.

<Double-1> No function.

<Button-2> Mark entry for start of scanning.

<B2-Motion> Drag the contents of the listbox at high speed in the direction the mouse moves.

<Up> Move the location cursor (active element) up by one element. If the selection mode is browse
or extended then the new active element is also selected and all other elements are deselected.
In extended mode the new active element becomes the selection anchor.

<Down> Move the location cursor (active element) down by one element. If the selection mode is 
browse or extended then the new active element is also selected and all other elements are
deselected. In extended mode the new active element becomes the selection anchor.

<Shift-Up> In extended mode, move the location cursor (active element) up one element and also extend
the selection to that element.

<Shift-Down> In extended mode, move the location cursor (active element) down one element and also
extend the selection to that element.

<Left> Scroll the listbox view left by the width of the character 0.

<Right> Scroll the listbox view right by the width of the character 0.

<Control-Left> Scroll the listbox view left by the width of the window.

<Control-Right> Scroll the listbox view right by the width of the window.

<Prior> Move the location cursor (active element) and the listbox view up by one page (the height of the 
window).

<Next> Move the location cursor (active element) and the listbox view down by one page (the height of
the window).

<Control-Prior> Scroll the listbox view up by one page (the height of the window).

<Control-Next> Scroll the listbox view down by one page (the height of the window).

<Home> Scroll the listbox horizontally to the left edge.

<End> Scroll the listbox horizontally to the right edge.

<Control-Home> Sets the location cursor to the the first element in the listbox, selects that element, and deselects
everything else in the listbox.



<Control-End> Sets the location cursor to the the last element in the listbox, selects that element, and deselects
everything else in the listbox.

<Shift-Control-Home> In extended mode, extends the selection to the first element in the listbox. In multiple  mode,
moves the location cursor to the first element in the listbox.

<Shift-Control-End> In extended mode, extends the selection to the last element. In multiple  mode, moves the
location cursor to the last element.

<space> Select the element at the location cursor and make it the active element.

<Select> Select the element at the location cursor and make it the active element.

<Shift-Control-space> In extended mode, extend the selection from the anchor to the active element.

<Shift-Select> In extended mode, extend the selection from the anchor to the active element.

<Escape> In extended mode, cancels the most recent selection and restores all the elements in the
selected range to their previous selection state

<Control-slash> In browse or extended modes, selects everything in the widget. In single and browse modes,
selects the active element and deselects everything else.

<Control-backslash> In extended, multiple  , and single modes, deselects everything in the widget.

<MouseWheel> (MS Windows only) Scroll listbox vertically by several entries in direction of wheel scroll.

<Button-4> 
or<Button-5>

(Unix only) Equivalent of <MouseWheel> to scroll listbox up (<4>) or down (<5>) by several 
entries.

<<Copy>> Copies the selection in the widget to the clipboard, if there is a selection.

<<ListboxSelect>> (Tk 8.3+) Virtual event is generated whenever the selection in a listbox changes.

3.16 Menu Widget
Command Description 

menu pathName 
?options?

Creates a top-level menu widget pathName with options and returns the new widget’s path name.
When invoked, pathName must not exist, but pathName’s parent should. A menu widget is used to
display a collection of one-line entries arranged in one or more columns. The several types of entries
can be combined in a single menu. The entire menu is one widget. There are three types of menus: 
menubar, normal, and tearoff. For menubar and torn-off menus, a clone of the original menu is
made. This clone is a menu widget in its own right, but it is a child of the original. Changes in the
configuration of the original are reflected in the clone. Clones are destroyed when either the tearoff
or menubar is closed, or when the original menu is destroyed. 

tk_menuSetFocus 
pathName

Used by several of the menu bindings to save the current focus and set the focus to the menu widget 
pathName .

tk_popup menu x y 
?entry?

Posts a pop-up menu menu with the entry at index entry (default is menu’s upper left corner)
positioned at root coordinate x,y 

Menu Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -borderwidth -foreground

-activeborderwidth -cursor -relief

-activeforeground -disabledforeground -takefocus

-background -font



Menu Widget Specific

Configure Option Resource Name Resource Class Description

-postcommand 
tclCommand postCommand Command

Specify Tcl command to invoke immediately before the
menu is posted. Returns result. 

-selectcolor color selectColor Background
Specifies indicator color for checkbutton and radiobutton 
entries. 

-tearoff boolean tearOff TearOff
Specifies whether to include a tear-off entry at top of menu
as entry 0 or not (default). 

-tearoffcommand 
tclCommand tearOffCommand TearOffCommand

Specifies Tcl command to be invoked when the menu is
torn off. The command excuted is: {tclCommandmenu 
pathName } { torn-off menu pathName}.  

-title  string title Title
Use string as the window title of the torn-off menu. If set to
the empty string, the menubutton title or the cascade item
text will be used. 

-type type type Type

Specifies menu type at creation. Type can be: menubar
(Set menu to be toplevel window menubar), tearoff (A
tear-off entry of dashed lines appears at the top of the menu
if enabled. When selected, creates a copy of the menu and
submenus as a torn-off menu in a new window), or normal
(normal cascade menu for either a top or lower level 
window).  

Indicies
Some menu commands support the use of an index to locate an entry within the menu starting at 0. The following are the
valid forms of specifying an index:

Index 
form

Description

number A decimal number giving the entry (starting from 0) in the menu.

active Indicates the entry that is currently active. If no entry is active, then this form is equivalent to none .
end Entry at the bottom of the menu. If no entries, then this form is equivalent to none.
last Same as end.

none Indicate "no entry at all" and can be used with activate option to deactivate all entries in a widget.

@y Indicates the entry closest toy-coordinate (pixel units) in the menu.

pattern Pattern is pattern-matched using Pattern Globbing against the label of each entry in the menu, in order from
the top down, until a matching entry is found.

Menu Widget Commands 
For commands that use indicies, see Indicies above for options.



Command Description 

pathName activate index Change state of entry at index to be the sole active entry in menu. 

pathName add type ?option
value ...?

Add new entry of type type to bottom of menu. See Entry Types below for types. See 
Menu Entries below for options. 

pathName cgetoption Returns the current value of the configuration option. See Menu Widget Options above for 
options .

pathName clone 
newPathName ?cloneType?

Makes a clone of menu as a new menunewPathName of typecloneType (see -type). 

pathName configure?option?
?value? ?option value ...?

Change the configuration option tovalue. Without value, a list describing option is
returned. Without option, a list of all available options for pathName is returned. For
multiple options an empty string is returned. See Menu Widget Options above for options.

pathName delete index1 
?index2?

Delete all entries between index1 and index2 (default is index1) inclusive. Can’t delete
tear-off entries. 

pathName entrycget index 
option

Return current value of option for entry at index. See Menu Entries below for options. 

pathName entryconfigure 
index ?option value ...?

Change the configuration option tovalue for entry at index. Without value, a list describing 
option is returned. Without option, a list of all available options for the entry is returned.
See Menu Entries below for options. 

pathName index index Returns the numerical index corresponding toindex or none for index none. 

pathName insert index type
?option value ...?

Insert new entry of type type to menu just before the entry at index. Entries can not be
inserted before the tearoff entry if used. See Entry Types below for types. See Menu 
Entries below for options. 

pathName invoke index Invoke the action of the menu entry at index . 

pathName post x y
Post or display menu pathName at root-window coordinates x,y (should be upper right
corner of entry). The coordinates are adjusted if necessary to guarantee that the entire
menu is visible on the screen. 

pathName postcascade index
Post submenu associated with cascade entry at index and unpost any previously posted 
menu. 

pathName type index Returns type of entry at index. SeeEntry Types below for types. 

pathName unpost
(Tk 8.4+) On Unix, unpost or unmap pathName so it is no longer displayed. This is
handled automatically on Windows and Mac. 

pathName yposition index
Returns the y-coordinate within the menu window of the topmost pixel in the entry
specified by index. 

Entry Types
Entry Type: Description:

cascade Menu entry with an associated submenu specified by -menu option which allows the construction of
cascading menus. Submenus are posted and unposted via the postcascade command. Except on Windows,
the -command option is evaluated each time the entry is invoked.

checkbutton Behaves like a checkbutton widget where if invoked it toggles between selected and deselected states. Sets
the global variable specified by -variable to the -onvalue value when selected and to the -offvalue value
when deselected. The "on" indicator color is set by the -selectcolor option and the -command option is
evaluated each time the entry’s state is toggled.

command Behaves like a button widget and when invoked, the -command option is evaluated.

radiobutton Behaves like a radiobutton widget where only one entry within a group may be selected at a time. When an
entry is selected, the -value value is stored to the global variable specified by -variable and previously
specified entry is unselected. The "selected" indicator color is set by the -selectcolor option and the 
-command option is evaluated each time the entry’s state becomes selected.

separator Displays a horizontal dividing line.



Menu Entries
General

The following options are valid for cascade, checkbutton, command, and radiobutton entries. They are not valid for
separator and tear-off entries.

-activebackground -bitmap -foreground 

-activeforeground -compound (8.4+) -image 

-background -font -underline 

Menu Entry Specific

The following options work for all cascade, checkbutton, command, and radiobutton entries unless otherwise specified. See 
Common Options and Resources in Options and Resources for full details.

Option Description

-accelerator 
string

Specifies string to display at right side of menu entry. Used for accelerator keystroke sequence to
invoke entry. Not valid for separator and tear-off entries. 

-columnbreak 
value

When value is set to 1, entry appears at top of a new column in menu. Default value of zero puts entry
under previous entry.

-command 
tclCommand

Tcl command to evaluate when entry is invoked. Not valid for separator and tear-off entries. 

-hidemargin 
value

Specifies whether the standard margins are drawn (default value of 0) or not (value of 1) around the 
entry. 

-indicatoron 
boolean

Specifies whether the checkbutton or radiobutton entry indictor should be displayed (default) or not. 

-label string Text string to display in the menu entry. Not valid for separator and tear-off entries. 

-menu pathName Specifies pathname of submenu to post when cascade entry is active. 

-offvalue value Value to store in checkbutton entry’s associated variable when deselected. 

-onvalue value Value to store in checkbutton entry’s associated variable when selected. 

-selectcolor color
Specifies indicator’s color for checkbutton and radiobutton entries. The default value of empty string
sets the color to the -selectcolor option for the menu. 

-selectimage 
image

Specifies image to show instead of -image when checkbutton and radiobutton entries are selected. 

-state state Specifies state of entry. Options are: active (use activeforeground and activebackground),disabled
(use disabledforeground and background), normal (use foreground and background). Not valid
for separator entries.

-value value Value to store in radiobutton entry’s associated variable when selected. 

-variable variable Specifies name of the global variable to set when the checkbutton or radiobutton is selected and
deselected for checkbutton.

Menu Entry Format:

Field 
Name:

Description:

Main field The main field is a label in the form of a text string, a bitmap, or an image, controlled by the -label,-bitmap,
and -image options for the entry.

Accelerator If the -accelerator option is specified for an entry, a second textual field is displayed to the right of the label.
It describes a keystroke sequence that may be used to invoke the same result as the menu entry.

Indicator The indicator is displayed to the left of the entry’s string for only checkbutton or radiobutton entries. It
indicates whether the entry is selected or not.



Special System Dependent Menus:

Platform Menu Name Description

Mac .menuName.apple Special Apple menu (Apple logo) that appears first on menubar. Adds user’s Apple Menu
Items folder to bottom of menu.

Mac .menuName.help Special right-justified Help menu. Adds Apple help items to top of menu.

Windows .menuName.system Windows System menu. Adds Microsoft items to top of menu.

Unix .menuName.help Special right-justified Help menu.

Menu Configurations
Config Decsription

Pulldown Menus
in Menubar

Menu widget with multiple cascade entries and associated pull down menus. Add to toplevel window
using the -menu option. 

Pulldown Menus
in Menu Buttons

Menubutton widget with multiple top-level menus arranged in a row within a menubar window. Each
top-level menu can be cascade with associated submenus. The top-level menu must be a child of the
menubutton, and each submenu must be a child of the menu that refers to it. 

Popup Menus Posts the top-level menu via tk_popup in response to a mouse button press or keystroke.

Option Menus Created with tk_optionMenu and consists of a menubutton with an associated menu that allows you to
select one of several values. The current value is displayed in the menubutton and is also stored in a
global variable. 

Torn-off Menus Created by invoking the tear-off entry at the top of an existing menu. The default bindings will create a
new menu that is a copy of the original menu and leave it permanently posted as a top-level window.
The torn-off menu behaves just the same as the original menu. 

Menu Widget Bindings



Event Description

<Enter> Entry underneath the mouse cursor activates.

<Leave> All of the entries in the menu deactivate, except in the special case where the mouse moves from a
menu to a cascaded submenu.

<FocusIn> none

<Motion> Active entry changes to track the mouse.

<ButtonPress> Change the posted cascade entry (if any) to match the mouse position,

<ButtonRelease>Active entry is invoked and if a menu, unpost it unless it is a tear-off.

<space> Invoke the active entry and unpost the menu.

<Return> Invoke the active entry and unpost the menu.

<Escape> Aborts a menu selection in progress without invoking any entry. It also unposts the menu unless it is a
torn-off menu.

<Left> Moves to the next menu on the left. For cascade submenus, the submenu is also unposted and the
current menu entry becomes the cascade entry in the parent. For top-level menus posted from a
menubutton, then the current menubutton is unposted and the next menubutton to the left is posted,
otherwise the key has no effect. The left-right order of menubuttons is determined by their stacking
order with the lowest menubutton on the left.

<Right> Moves to the next menu on the right. For cascade entries, the submenu is also posted and the current
menu entry becomes the first entry in the submenu, otherwise if the current menu was posted from a
menubutton, then the current menubutton is unposted and the next menubutton to the right is posted.

<Up> Activate the next higher entry in the menu. When the top of the menu is reached, the active entry
wraps around to the bottom.

<Down> Activate the next lower entry in the menu. When the bottom of the menu is reached, the active entry
wraps around to the top.

<KeyPress> If any of the entries in a menu have letters underlined with with -underline option, then pressing one
of the underlined letters (or its upper-case or lower-case equivalent) invokes that entry and unposts the 
menu.

<Alt-KeyPress> Implements keyboard traversal of menus. Given an ASCII character "char", it looks for a menubutton
with that character underlined. If one is found, it posts the menubutton’s menu.

<F10> Traverses to the first menubutton in the toplevel for a given window, and posts that menubutton’s 
menu.

<<MenuSelect>>Virtual event generated whenever a menu’s active entry is changed.

3.17 Menubutton Widget
Command Description 

menubutton pathName
?options? 

Creates a menubutton widget pathName with options and returns the new widget’s path name.
When invoked,pathName must not exist, but pathName’s parent should. A menubutton widget
is used to display a textual string, bitmap, or image and is associated with a menu widget.
Selecting the menu button displays the associated menu. Text can only use a single font. 

tk_optionMenu 
pathNamevarName value
?value ...?

Creates a menubutton with name pathName and an associated menu of options. When the
menubutton is selected, the associated option menu pops up and the user can select from the 
value args. The selected value is stored in varName and displayed as the label in the
menubutton. Returns the pathname of the menu associated with pathName. 

Menubutton Widget Options



Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -disabledforeground -padx

-activeforeground -font -pady 

-anchor -foreground -relief 

-background -highlightbackground -takefocus 

-bitmap -highlightcolor -text  

-borderwidth -highlightthickness -textvariable 

-compound (8.4+) -image -underline 

-cursor -justify -wraplength 

Menu Widget Specific

Configure 
Option

Resource 
Name

Resource 
Class

Description

-direction 
direction

direction Height Specifies where the menu will popup. Direction can be above, below
(default), left, right , or flush (over) with the menubutton. 

-height height height Height Height of menubutton widget (default is to auto size) in screen units
(bitmap or image) or lines of text (text). See Coordinates in Options and 
Resources for screen unit options.

-indicatoron 
boolean

indicatorOn IndicatorOn Specifies whether an indictor should be displayed to the right of the
menubutton (default) and treated as a option menubutton. 

-menu 
pathName

menu MenuName Specifies pathName of menu widget to post when button is invoked. Menu
must be a child of the menubutton. 

-state state state State Specifies state of entry. Options are: active (use activeforeground and 
activebackground ), disabled (use disabledforeground and 
background),normal (use foreground and background).

-width  width width Width Width of menubutton widget (default is to auto size) in screen units
(bitmap or image) or characters (text). See Coordinates in Options and 
Resources for screen unit options.

Menubutton Widget Commands
Command Description 

pathName cgetoption Returns the current value of the configuration option. See Menubutton Widget Options
above for options .

pathName configure?option?
?value? ?option value ...?

Change the configuration option tovalue. Without value, a list describing option is
returned. Without option, a list of all available options for pathName is returned. For
multiple options an empty string is returned. See Menubutton Widget Options above for 
options. 

Menubutton Widget Bindings



Event Description

<Enter> Menubutton is activated.

<Leave> Menubutton is deactivated and returns to its normal state.

<Button-1> Post menu for menubutton or activate entry.

<Motion> Deactivates previous entry and activates new entry.

<B1-Motion> Deactivates previous entry and activates or posts submenus for new entry.

<ButtonRelease-1>If the release happens inside the menubutton then leave its menu posted with element 0 activated,
otherwise unpost the menu without invoking any menu entry. If menu entry is active, invoke entry
and unpost menu.

<Alt-KeyPress> Implements keyboard traversal of menus. Given an ASCII character "char", it looks for a
menubutton with that character underlined. If one is found, it posts the menubutton’s menu.

<F10> Traverses to the first menubutton in the toplevel for a given window, and posts that menubutton’s 
menu.

<space> Invoke the active entry and unpost the menu.

<Return> Invoke the active entry and unpost the menu.

<<MenuSelect>> Virtual event generated whenever a menu’s active entry is changed.

3.18 Message Widget
Command Description 

message 
pathName
?options? 

Creates a message widget pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should. A message widget is used to display a textual
string. Text can only use a single font and is broken up on word boundaries if possible. Tab characters are
replaced with blank space up to the next 8-character boundary, newlines cause line breaks, and control
characters and other undefined characters in the font are displayed as a 8-bit hex backslash sequence 
(\xhh). 

Message Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-anchor -highlightbackground -relief 

-background -highlightcolor -takefocus 

-borderwidth -highlightthickness -text 

-cursor -justify -textvariable 

-font -padx

-foreground -pady

Message Widget Specific



Configure 
Option

Resource 
Name

Resource 
Class

Description

-aspect 
integer

aspect Aspect Ratio of text width to text height for text display. Formula is: ratio =
100*width/height. 100 = text is as wide as it is tall. 150 (default) = text is 1.5
times wide as it is tall.

-width  width width Width Width of menubutton widget (default is to auto size) in screen units (bitmap or
image) or characters (text). See Coordinates in Options and Resources for screen
unit options.

Message Widget Commands
Command Description 

pathName cgetoption Returns the current value of the configuration option. See Message Widget Options above
for options .

pathName configure?option?
?value? ?option value ...?

Change the configuration option tovalue. Without value, a list describing option is
returned. Without option, a list of all available options for pathName is returned. For
multiple options an empty string is returned. See Message Widget Options above for 
options. 

3.19 Options and Resources
A widget is a term used in describe a component of a graphical user interface (GUI). In general, a widget name (pathName)
is the concatenation of its parent’s name followed by a period (unless the parent is the root window ".") and a string
containing no periods (eg. .mainframe.buttonframe.b1).

Command Description 

option add 
pattern value 
?priority?

Adds new option with name or class pattern set to value at priority (0-100) to the database. Priority
level symbols are: widgetDefault (level 20 - Use default values hard-coded into widgets), startupFile
(level 40 - Use options in app-specific startup files), userDefault (level 60 - User specific options from
.Xdefaults, X server database, user specific start-up files), and interactive (level 80 - default - Options
specified interactively after the application starts running).

option clear Clears option database and reloads from user’s Xdefaults on next add or get. 

option get 
window name 
class

Returns the option value with highest priority level for window under name and class or empty string if 
none. 

option readfile 
fileName 
?priority?

Reads options from Xdefaults-style file into option database at priority (default is interactive). 

tk_bisque Set default color palette to old bisque (light brown) scheme.

tk_setPalette 
color

Changes the color scheme for Tk so the default background color is color and other default colors are
computed using reasonable defaults. 

tk_setPalette 
option color
?option color ...?

Set the default color for option in the color scheme. Modifies existing widgets using default values and
adds to option database at priority widgetDefault. Must include background option in all cases.
Available options are: activeBackground,activeForeground, background, disabledForeground, 
foreground,highlightBackground, highlightColor , insertBackground,selectColor, 
selectBackground, selectForeground, and troughColor .



Widget Options and Resources:
When a widget is created, the order for determining which configuration options to use is: command line options, resource
database entries (name or class), then the hard coded value from widget implemenation. Options and resources are
configured by:

Method Syntax

Configure Option pathName configure option value ?option value ...?

Resource Name option add {app name or *}.{widget name}.{Resource name}  value

Resource Class option add Tk.{widget name}.{Resource Class}  value

Common Options and Resources
The following is the list of common options and resources used by most widgets. In each widget section, the applicable
options from the following list will be listed. See Coordinates below for screen unit options. See Colors below for color 
options.

Configure Option Resource Name Resource Class Description

-activebackground 
color

activeBackground Foreground Background color of widget when it is active.
Normally ignored when tk_strictMotif  is set. 

-activeborderwidth 
width

activeBorderWidth BorderWidth Border width of widget in screen units when it is 
active. 

-activeforeground 
color

activeForeground Background Foreground color of widget when it is active. 

-anchor anchorPos anchor Anchor Where to position information in widget. Valid 
anchorPos values: n, ne, e,se,s,sw,w,nw, and 
center. 

-background color background Background Normal background color of widget (Also -bg). 

-bitmap bitmap bitmap Bitmap Bitmap to display in widget. SeeDefault Bitmaps
below. Overrides text options. Set to empty
string to re-enable text display. Options are: 

name To use an existing bitmap name

@fileName To load bitmap from fileName

-borderwidth width borderWidth BorderWidth Normal 3-D border width of widget in screen
units. (Also -bd). 

-compound value compound Compound

(Tk 8.4+) Specifies if the widget should display
both an image and text, and if so, where the
image should be placed relative to the text.
Options are: bottom,center, left, none (default
whiches uses -image and -bitmap options), 
right , and top. 

-cursor cursor cursor Cursor Cursor to display when mouse pointer is in
widget. Valid cursors: 

name [fgColor [bgColor]] Name of cursor (See Cursors ). Optionally
specify the foreground (default is black) and
background (default is transparent) colors. 

@sourceName maskName fgColor bgColorGet source and mask bits from files sourceName
and maskName.

@sourceName fgColor Get source bits from file sourceName with
transparent background. (Unix only)

@sourceName (Tk 8.3+) Load system cursor (.ani or .cur) from 
sourceName. (MS Windows only)



-disabledforeground 
color

disabledForeground DisabledForeground Foreground color of widget when it is disabled.
If set to an empty string, the normal foreground
color with stippled fill pattern is used. 

-exportselection 
boolean

exportSelection ExportSelection Whether a selection in the widget should also be
the X selection. 

-font font font Font Font to use when drawing text inside the widget.
See Fonts. 

-foreground color foreground Foreground Normal foreground color of widget. (Also -fg). 

-highlightbackground 
color

highlightBackground HighlightBackground Color of rectangle drawn around widget when it
does not have the input focus. 

-highlightcolor color highlightColor HighlightColor Color of rectangle drawn around widget when it
has the input focus. 

-highlightthickness 
width

highlightThickness HighlightThickness Width of highlight rectangle drawn around
widget when it has the input focus in screen 
units. 

-image imageName image image Image to display in the widget. Overrides 
bitmap. Set to empty string to re-enable bitmap
or text display. 

-insertbackground 
color

insertBackground Foreground Background color of area covered by the
insertion cursor. Overrides background or 
selectbackground . 

-insertborderwidth 
width

insertBorderWidth BorderWidth 3-D border width to draw around the insertion
cursor in screen units. 

-insertofftime 
milliseconds

insertOffTime OffTime Time the insertion cursor should remain "off" in
each blink cycle. 

-insertontime 
milliseconds

insertOnTime OnTime Time the insertion cursor should remain "on" in
each blink cycle. 

-insertwidth width insertWidth InsertWidth Insertion cursor width in screen units. 

-jump boolean jump Jump When scrollbars and scales connected to the
widget notify widget of updates. True is delay
until mouse button is released. False is 
continuously. 

-justify option justify Justify How to justify lines of text. Options are: left
(default), center, or right . 

-orient option orient Orient Orientation the widget should for its layout.
Options are: horizontal, vertical 

-padx width padX Pad Extra space in screen units to request for the
widget in X-direction. 

-pady height padY Pad Extra space in screen units to request for the
widget in Y-direction. 

-relief option relief Relief Desired widget border 3-D effect. Options are: 
flat , groove, raised, ridge,solid, or sunken. 

-repeatdelay 
milliseconds

repeatDelay RepeatDelay Time a button or key must be held down before
it begins to auto-repeat. 

-repeatinterval 
milliseconds

repeatInterval RepeatInterval Time between auto-repeats once action has 
begun. 

-selectbackground 
color

selectBackground Foreground Background color for selected items. 

-selectborderwidth 
width

selectBorderWidth BorderWidth Width of border to draw around selected items
in screen units. 



-selectforeground 
color

selectForeground Background Foreground color for selected items. 

-setgrid boolean setGrid SetGrid Whether this widget controls the resizing grid
for its toplevel window. 

-takefocus focusType takeFocus TakeFocus Determines if window accepts the focus during
keyboard traversal. Options are:

0 skip window

1 allow if viewable

empty string Tk decides (skip if disabled, no key bindings, or not viewable)

other evaluates as a Tcl script with window name lappended as an arg. Script
must return 0, 1, or empty string.

-text string text Text Text string to be displayed inside the widget.
Can include \n. 

-textvariable variable textVariable Variable Variable which contains a text string to be
displayed inside the widget. 

-troughcolor color troughColor Background Trough color for scrollbar and scale widgets. 

-underline index underline Underline Integer index of a character to underline in the
widget for keyboard traversal. 

-wraplength length wrapLength WrapLength Maximum line length for word-wrapping in
screen units. 0 = no wrapping except for \n. 

-xscrollcommand 
cmdPrefix

xScrollCommand ScrollCommand Prefix for a command used to communicate with
horizontal scrollbars. Widget will execute cmd
with args of start and end of current view.
Values can be from 0 to 1. 

-yscrollcommand 
cmdPrefix

yScrollCommand ScrollCommand Prefix for a command used to communicate with
vertical scrollbars. 

Default Bitmaps
All Platforms: Mac only:

error hourglass accessory edition pfolder trash

gray12 info application floppy querydoc

gray25 questhead caution folder ramdisk

gray50 question cdrom note stationary

gray75 warning document preferences stop

Colors:
For color options the following are the valid options where colorname is a text string matching a color in the X server
database and # starts a numeric specification of the red, green, and blue intensities. Each R, G, and B represents a hex digit.
The four forms permit colors to be specified with 4-bit, 8-bit, 12-bit, or 16-bit values. When fewer than 16 bits are provided
for each color, they represent the most significant bits of the color.

colorname #RGB #RRGGBB #RRRGGGBBB #RRRRGGGGBBBB 

Commonly used colors for colorname:



DarkRed maroon red DeepPink coral pink
gold goldenrod yellow LightYellow DarkOrange orange
brown chocolate tan wheat chartreuse
DarkGreen green honeydew PaleGreen aquamarine turquoise
DarkBlue MidnightBlue blue LightBlue DarkCyan cyan SkyBlue
SlateBlue DodgerBlue SteelBlue CadetBlue DarkViolet purple violet
black DarkGray gray LightGray bisque white
gray1 to gray100 or grey1 to grey100 OrangeRed magenta BlueViolet

Special MS Windows Colors:

Color Name Purpose

SystemButtonFace Default background

SystemButtonText Default foreground

SystemButtonHighlight

SystemButtonShadow

SystemHighlight Default highlight background

SystemHighlightText Default highlight foreground

SystemWindow Default entry, list, text, etc. background

SystemWindowText Default entry, list, text, etc. foreground 

SystemWindowFrame Default window frame color

 

Coordinates:
For options that take screen units, default value is in pixels unless one of the following optional suffix modifiers is present.
Units can be floating point numbers. Coordinate (0,0) is in the top left corner of the widget. X-Windows and MS Windows
9x and ME use 16 bit coordinates. MS Windows NT and later use 32 bit coordinates.

c (centimeters) i (inches) mm (millimeters) p (points where 1p = 1/72 inch) 

Cursors:
Default cursors from /usr/include/X11/cursorfont.h on Unix:



arrow crosshair iron_cross right_tee tcross

based_arrow_down diamond_cross left_ptr rightbutton top_left_arrow

based_arrow_up dot left_side rtl_logo top_left_corner

boat dotbox left_tee sailboat top_right_corner

bogosity double_arrow leftbutton sb_down_arrow top_side

bottom_left_corner draft_large ll_angle sb_h_double_arrow top_tee

bottom_right_corner draft_small lr_angle sb_left_arrow trek

bottom_side draped_box man sb_right_arrow ul_angle

bottom_tee exchange middlebutton sb_up_arrow umbrella

box_spiral fleur mouse sb_v_double_arrow ur_angle

center_ptr gobbler pencil shuttle watch

circle gumby pirate sizing xterm

clock hand1 plus spider X_cursor

coffee_mug hand2 question_arrow spraycan

cross heart right_ptr star

cross_reverse icon right_side target

MS Windows only (Tk 8.3+): 

no (no cursor) starting size size_ne_sw size_ns size_nw_se size_we uparrow wait

Mac only:

cross-hair ibeam text

3.20 Panedwindow
Command Description 

panedwindow 
pathName
?options? 

(Tk 8.4+) Creates a panedwindow widget pathName with options and returns the new widget’s path
name. When invoked, pathName must not exist, but pathName’s parent should. A panedwindow
widget can contain any number of panes arranged horizontally or vertically. Each pane contains one
widget, and each pair of panes is separated by a moveable (via mouse movements) sash and sash
handle. Moving a sash causes the widgets on either side of the sash to be resized. When a pane is
resized from outside (eg, it is packed to expand and fill, and the containing toplevel is resized), space is
added to the final (rightmost or bottommost) pane in the window. 

Panedwindow Options
Standard

See Common Options and Resources in Options and Resources for full details.

-background -cursor -relief

-borderwidth -orient



Panedwindow Specific

See Coordinates in Options and Resources for screen unit options.

Configure Option
Resource 
Name

Resource 
Class

Description

-handlepad size handlePad HandlePad Specifies the distance in screen units from the top or left end of the
sash (depending on the orientation of the widget) at which to draw the 
handle.

-handlesize size handleSize HandleSize Specifies the size of the square sash handle in screen units.

-height height height Height Height of panedwindow in screen units. Default is to auto size.

-opaqueresize 
boolean

opaqueResize OpaqueResizeSet to true, panes should be resized as a sash is moved, or if false,
resizing should be deferred until the sash is placed. 

-sashcursor 
cursor

sashCursor SashCursor Mouse cursor to use when over a sash. Default or when set to null,
uses sb_h_double_arrow for horizontal and sb_v_double_arrow for
vertical panedwindows. 

-sashpad size sashPad SashPad Specifies the amount of pad in screen units to leave on each side of a 
sash.

-sashrelief relief sashRelief SashRelief Desired sash 3-D effect. Options are: flat , groove, raised, ridge, solid
, or sunken.

-sashwidth size sashWidth SashWidth Width of sash in screen units.

-showhandle 
boolean

showHandle ShowHandle Specifies whether sash handles should be shown.

-width  width width Width Width of panedwindow in screen units.

Panedwindow Commands
See Coordinates in Options and Resources for screen unit options.

Command Description 

pathName add window ?window
...? ?option value ...?

Add one or more windows to the panedwindow, each in a separate pane using the
specified options . See paneconfigurefor options. Tk 8.4.0 to 8.4.3 will set last pane to
use all avalable space.

pathName cget option Returns the current value of the configuration option. See Panedwindow Options above
for options .

pathName configure ?option?
?value? ?option value ...?

Change the configurationoption tovalue. Without value, a list describing option is
returned. Without option, a list of all available options for pathName is returned. For
multiple options an empty string is returned. See Panedwindow Options above for 
options.

pathName forget window
?window ...?

Removes and unmaps each pane window from the panedwindow and forgets their
configuration options.

pathName identify  x y Identify the panedwindow component at window coordinate xy. If over a slash or
handle, returns two element list with index of slash or handle and type (slash or handle),
else returns empty list.

and 

pathName proxy ?args? Used to query and change the position of the sash proxy for rubberband-style pane
resizing. Valid args are:

coord Return a list containing the x and y coordinates of the most recent proxy location.

forget Remove the proxy from the display.

place x y Place the proxy at the given x and y coordinates.

pathName sash ?args? Used to query and change the position of sashes in the panedwindow. Valid args are:



coord index Return the current x and y coordinate pair for the top left corner of the region containing
the sash given by index. Index must be an integer between 0 and 1 less than the number
of panes in the panedwindow.

dragto index x y Compute the difference between the given coordinates and the coordinates given to the
last sash coord command for sash given by index. It then moves that sash the computed 
difference.

mark  index x y Records coordinates x andy for the sash given by index.

place index x y Place the sash given by index at the coordinates x and y.

pathName panecget window 
option

Returns the current value of the configuration option for panewindow window. See 
paneconfigure below for options.

pathNamepaneconfigure 
window option ?value? ?option
value ...? 

Change the configuration option to value for panewindow window. Without value, a list
describing option is returned. Without option, a list of all available options for 
pathName is returned. For multiple options an empty string is returned.

-after afterWindow Insert window managed by pathName after afterWindow.

-before beforeWindow Insert window managed by pathName before beforeWindow.

-height height Specify height of window in screen units (autosize is the default or when set to an
empty string).

-hide boolean
(Tk 8.5+) Controls the visibility of a pane. Hidden panes are still maintained in the list
of panes

-minsize value Specifies the minimum size of window for the paned direction (vertical or horizontal) in
screen units.

-padx amount Specifies amount of horizontal padding to leave on each side of window in screen units
(default is 0). 

-pady amount Specifies amount of vertical padding to leave on each side of window in screen units
(default is 0).

-sticky style Specifies where to position window in panewindow if the cavity is larger than the
requested dimensions. Style can be zero or more positions (n, s, e or w) with optional
space and comma separators. If both n and s (or e and w) are specified, the slave will be
stretched to fill the entire height (or width) of its cavity. The default or when set to an
empty string, is to center the slave within the cell.

-stretch when

(Tk 8.5+) Controls how extra space is allocated to each of the panes. Options are
always (pane will always stretch), first (only left-most or top-most will stretch), last
(only right-most or bottom-most will stretch), middle (will stretch if not the first or
last), and never (pane will never stretch).

-width  width Specify width of window in screen units (autosize is the default or when set to an empty 
string).

pathNamepanes Returns an ordered list of the widgets managed by pathName.

3.21 Radiobutton
Command Description 

radiobutton  
pathName
?options? 

Creates a radiobutton widget pathName with options and returns the new widget’s path name. When
invoked, pathName must not exist, but pathName’s parent should. A radiobutton widget displays a
textual string, bitmap, or image and a diamond or circle called an indicator. By default a radiobutton is
configured to select itself on a button click. To deselect a radiobutton, another button in the group must
be selected. This means only one radiobutton within a group (all use same -variable variable) can be
selected at a time. Radiobuttons also select and deselect themselves when the value of the -variable
variable changes. Multiple fonts within a button text field are not supported. 



Radiobutton Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -disabledforeground -padx

-activeforeground -font -pady 

-anchor -foreground -relief 

-background -highlightbackground -takefocus 

-bitmap -highlightcolor -text  

-borderwidth -highlightthickness -textvariable 

-compound (8.4+) -image -underline 

-cursor -justify -wraplength 

Radiobutton Specific

See Coordinates in Options and Resources for screen unit options.



Configure 
Option

Resource 
Name

Resource 
Class

Description

-command 
script

command Command Tcl command to associate with the button. Script is invoked when mouse
button 1 is released over the button window. The button’s global variable 
(-variable option) will be updated before the command is invoked.

-height height height Height Height of button in screen units for bitmaps/images and in lines for text.
Default is to auto size.

-indicatoron 
boolean

indicatorOn IndicatorOn Specifies whether the indicator should be drawn (default) or not. If false,
the -relief option is ignored and the relief is set to sunken when widget is
selected and raised in all other cases.

-offrelief  type offRelief OffRelief (Tk 8.4+) Specifies the relief for the radiobutton when the indicator is not
drawn and the radiobutton is off. Options are: flat , raised (default), and 
sunken.

-overrelief 
type

overRelief OverRelief (Tk 8.4+) Alternative relief for when mouse cursor is over button. Not used
when set to empty string (default). Options are: flat , raised, and sunken.

-selectcolor 
color

selectColor Background Specifies a background color to use when the button is selected. If set to
empty string, no special color is used. If -indicatoron is true then the color
applies to the indicator, if false this color is used as the background for the
entire widget when selected.

-selectimage 
image

selectImage SelectImage Specifies image to be displayed when radiobutton is selected. Used with 
-image.

-state state state State State of button. Options are: active (mouse pointer over button, use 
activeforeground and activebackground),disabled (button is insensitive,
use disabledforeground and background), or normal (use foreground
and background ).

-tristateimage 
image

tristateImageTristateImage 
(Tk 8.5+) Specifies an image to display (in place of the image option) when
the radiobutton is in tri-state mode. This option is ignored unless the image
option has been specified. 

-tristatevalue 
value

tristateValue Value 
(Tk 8.5+) Specifies the value that causes the radiobutton to display the
multi-value selection, also known as the tri-state mode. Defaults to {}.

-value value value Value Value stored in variable specified with -variable option when the
radiobutton is selected.

-variable 
variable

variable Variable Specifies name of global variable to use for button selection status. Default
is variable selectedButton .

-width width width Width Width of button in screen units for bitmaps/images and in characters for
text. Default is to auto size.

Effect Options

Toolbar buttons -relief flat -overrelief raised
Text-align toolbar buttons -offrelief flat -indicatoron false -overrelief raised

Radiobutton Commands



Command Description 

pathName cget option Returns the current value of the configuration option for radiobutton pathName. See 
Radiobutton Widget Options above for options.

pathName 
configure?option? ?value?
?option value ...? 

Change the configuration option for the radiobutton pathNamevalue. Without value, a list
describing the available options is returned. Without option, a list describing all of the
available options for pathName is returned. For multiple options an empty string is returned.
See Radiobutton Widget Options to above for options.

pathName deselect Deselect the radiobutton and set the associated variable to its "off" value of empty string.

pathName flash Flash radiobutton by toggling between active and normal colors several times. Radiobutton
is left is initial state of active or normal. Ignored if radiobutton is disabled.

pathName invoke Selects the radiobutton and invokes the Tcl command specified with -command, if any.
Returns value of Tcl command or empty string if no -command. Ignored if button is 
disabled.

pathName select Selects the radiobutton and set the associated variable to its "on" value.

Default Radiobutton Bindings
Active or normal radiobutton default bindings:

Event Description

<Enter> On Unix, when mouse passes over button statebecomesactive.

<Leave> On Unix, when mouse leaves the button state becomes normal.
<Button-1> or 
<Return><space>
or

On Unix, relief changes to sunken and associated -command script is executed.

<Button-1> On Windows and Mac, relief changes to sunken and state becomes active.
<ButtonRelease-1> On Windows and Mac, relief changes to raised, state becomes normal, and associated 

-command script is executed.

<Enter> On Windows and Mac, relief changes to sunken and state becomes active.
<space> On Windows and Mac, relief changes to sunken and associated -command script is 

executed.

3.22 Scale Widget
Command Description 

scale 
pathName 
?options?

Creates a scale widget pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should.A scale widget displays a rectangular trough and
a small slider either a vertical or horizontal orientation. The scale value may be linked to the slider, such
that a change in one affects the other. 

Scale Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.



-activebackground -foreground -relief

-background -highlightbackground -repeatdelay

-borderwidth -highlightcolor -repeatinterval

-cursor -highlightthickness -takefocus

-font -orient -troughcolor

Scale Widget Specific

See Coordinates in Options and Resources for screen unit options.

Configure 
Option

Resource 
Name

Resource 
Class

Description

-bigincrement
number

bigIncrement BigIncrement Specifies the increment size for interactions with scale that cause its
value to change by "large" increments. A value of 0 sets the large
increments default to 1/10 the range of the scale.

-command 
tclCommand

command Command Tcl command to execute when scale’s value changes via widget
command. Passes new scale value as an arg.

-digits integer digits Digits An integer specifying how many significant digits should be retained
when converting the value of the scale to a string. If <= 0, scale picks
the smallest value forwhich each slider position prints a different string.

-from  number from From A real value specifying the left or top end of the scale.

-label string label Label A string to display as the label at the top right of the scale for vertical
scales and at the top left of the scale for horizontal scales.

-length size length Length Specifies the desired long dimension (height for vertical or width for
horizontal) of the scale in screen units.

-resolution 
number

resolution Resolution A real value (default is 1) specifying the scale resolution. When number
> 0, the scale’s value, tick marks, and endpoints will be rounded to an
even multiple of number . When number < 0, no rounding occurs.

-showvalue 
boolean

showValue ShowValue Specifies whether to show the value of the scale to the left of the slider
for vertical scales or above the slider for horizontal scales.

-sliderlength 
size

sliderLength SliderLength Specifies long dimension size of the slider in screen units.

-sliderrelief 
relief

sliderRelief SliderRelief Specifies the relief to use for the slider. Options are: flat , groove, 
raised, ridge ,solid, or sunken.

-state state state State State of button. Options are: active (use activebackground),disabled
(value can’t be changed), or normal (use background).

-tickinterval 
number

tickInterval TickInterval A real value specifying the spacing between tick marks placed to the
left of the trough for vertical scales and below the trough for horizontal
scales. Set to 0 for no tick marks.

-to number to To A real value specifying the right or bottom end of the scale.

-variable 
variable

variable Variable Specifies name of global variable to use for scale value.

-width width width Width Specifies the desired narrow dimension (width for vertical or height for
horizontal) of the scale in screen units.

Scale Elements
Element Description

trough1 Region between the slider and top or left end of scale.

slider Rectangle that indicates value or position of scale.

trough2 Region between the slider and bottom or right end of scale.



Scale Commands
Command Description 

pathName cget option Returns the current value of the configuration option for scale pathName. See Scale Widget 
Options above for options.

pathName 
configure?option? ?value?
?option value ...? 

Change the configuration option for the scale pathName to value. Without value, a list
describing the available options is returned. Without option, a list describing all of the
available options for pathName is returned. For multiple options an empty string is returned.
See Scale Widget Options above for options.

pathName coords ?value?
Returns a list of the x and y coordinates of the point along the centerline of the scale
corresponding to value (default is scale’s current value). 

pathName get ?x y?
Returns the scale value corresponding the coordinate x and y. Default is to return the scale’s
current value. 

pathName identify  x y
Returns a string indicating what part of scale is at coordinate x and y. Valid values are 
empty (not a valid element) or one of the Scale Elements above. 

pathName set value Changes the current value of scale to value . 

Scale Bindings
Event Description

<Enter> Activate scale.

<Motion> Activate scale.

<Leave> Deactivate scale.

<Button-1> If in trough, scale’s value will be incremented or decremented by value of -resolution
option in the direction of the button press. If the button is held down, the action 
auto-repeats.

<ButtonRelease-1> Cancel repeat, end drag, and activate scale.

<B1-Leave> or <B1-Enter> No function

<B1-Motion> If pressed over the slider, the slider can be dragged with the mouse.

<Control-Button-1> If in trough, slider moves all the way to the end of its range in the direction of the button 
press.

<Button-2> Scale’s value is set to the mouse position.

<B2-Motion> Scale’s value changes with the drag.

<ButtonRelease-2> Cancel repeat, end drag, and activate scale.

<B2-Leave> or <B2-Enter> No function

<Up> or <Left> Move the slider up or left by the value of the -resolution option.

<Down> or <Right> Move the slider down or right by the value of the -resolution option.

<Control-Up> or 
<Control-Left>

Move the slider up or left by the value of the -bigincrement option.

<Control-Down> or 
<Control-Right>

Move the slider down or right by the value of the -bigincrement option.

<Home> Moves the slider to the top or left end of its range.

<End> Moves the slider to the bottom or right end of its range.



3.23 Scrollbar
Command Description 

scrollbar 
pathName 
?options?

Creates a scrollbar widget pathName with options and returns the new widget’s path name. When
invoked, pathName must not exist, but pathName’s parent should. A scrollbar widget displays two
arrows, one at each end of the scrollbar, and a slider in the middle portion of the scrollbar. It provides a
visual representation of how much of an associated window is visible and also a way to change the visible 
portion. 

Scrollbar Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -highlightcolor -repeatdelay

-background -highlightthickness -repeatinterval

-borderwidth -jump -takefocus

-cursor -orient -troughcolor

-highlightbackground -relief

Scrollbar Widget Specific

See Coordinates in Options and Resources for screen unit options.

Configure Option Resource Name Resource 
Class

Description

-activerelief number activeRelief ActiveRelief Relief to use for active element. Options are: flat , 
groove, raised,ridge, solid, or sunken. Non-active
elements use the raised relief. 

-command 
tclCommand

command Command Tcl command to invoke to change the view in the widget
associated with the scrollbar. See Scrolling Commands
below for args passed to tclCommand. 

-elementborderwidth 
width

elementBorderWidth BorderWidth Specifies width of borders around internal elements
(arrows and slider) in screen units. If set to 0, 
-borderwidth  is used instead. 

-width width width Width Specifies the desired narrow dimension (width for
vertical or height for horizontal) of the scrollbar in
screen units. 

Scrollbar Elements
Element Description

arrow1 Top or left arrow in the scrollbar.

trough1 Region between the slider and arrow1.

slider Rectangle that indicates what is visible in the associated widget.

trough2 Region between the slider and arrow2.

arrow2 Bottom or right arrow in the scrollbar.



Scrollbar Commands
Command Description 

pathName activate 
?element?

Marks element as the active element. Except for the troughs, element can be one of the
elements listed in Scrollbar Elements above. Without element, returns the current active
element or empty string if none. 

pathName cget option Returns the current value of the configuration option for scrollbar pathName. See Scrollbar
Widget Options above for options.

pathName 
configure?option? ?value?
?option value ...? 

Change the configuration option for the scrollbar pathName to value. Without value, a list
describing the available options is returned. Without option , a list describing all of the
available options for pathName is returned. For multiple options an empty string is returned.
See Scrollbar Widget Options above for options.

pathName delta deltaX 
deltaY

Returns a real number (-1 to 1) indicating the change in the scrollbar setting corresponding
to the deltaX (horizontal scrollbar) or deltaY (vertical scrollbar) value in pixels. The args and
the result may be zero or negative. 

pathName fraction x y
Returns a real number (0 to 1) indicating where the closest point given by pixel coordinate x
and y lies in the trough area of the scrollbar. Top or left is at 0 and the bottom or right is at 1. 

pathName get
Returns current scrollbar settings as the list whose elements are the args to the most recent 
set widget command. 

pathName identify x y
Returns the name of element under pixel coordinates x and y or empty string if none. See 
Scrollbar Elements above valid elements. 

pathName set first last
Invoked by scrollbar’s associated widget to describe the current view in the widget. First
and last are real values (0 to 1) describing the first and last part of the visible portion of the
scrollbar’s associated widget. 

Scrollbar Commands
The following are the valid formats of the command invoked by the -command option to notify the scrollbar’s associated
widget to change its view. The pathName is the scrollbar’s associated widget and command is either xview (for horizontal
scrollbars) or yview (for vertical scrollbars).

Command Description 

pathName command moveto 
fraction

Widget should adjust its view so that the point given by real number fraction (0 to 1)
appears at the beginning of the widget.

pathName command scroll 
number units

Widget should adjust its view bynumber units (characters or lines for text widgets or
screen units for bitmaps or images).

pathName command scroll 
number pages

Widget should adjust its view bynumber pages (height of the window or screenful, etc.).

Scrollbar Bindings



Event Over 
Element

Description

<Enter> Activate scrollbar.

<Motion> Activate scrollbar.

<Leave> Deactivate scrollbar.

<Button-1> arrow1 Shifts view in the associated widget up or to the left by one unit so document appears
to move down or to the right. If the button is held down, the action auto-repeats.

<Button-1> trough1 Shifts view in the associated widget up or to the left by one screenful so document
appears to move down or to the right. If the button is held down, the action 
auto-repeats.

<Button-1> trough2 Shifts view in the associated widget down or to the right by one screenful so
document appears to move up or to the left. If the button is held down, the action 
auto-repeats.

<Button-1> arrow2 Shifts view in the associated widget down or to the right by one unit so document
appears to move up or to the left. If the button is held down, the action auto-repeats.

<B1-Motion> slider View changes as the slider is dragged. If the jump  option is true, the view only
changes when the mouse button is released. 

<Button-2> trough or 
slider

Sets the view to correspond to the mouse position.

<Button-2> arrow Same as <Button-1>.

<B2-Motion> trough or 
slider

Causes the view to drag with the mouse.

<Control-Button-1> arrow1 or 
trough1

Adjusts view to the very top or left of the document.

<Control-Button-1> arrow2 or 
trough2

Adjusts view to the very bottom or right of the document.

<Up> any For vertical scrollbars, shifts view in the associated widget up by one unit so
document appears to move down. If the key is held down, the action auto-repeats.

<Down> any For vertical scrollbars, shifts view in the associated widget down by one unit so
document appears to move up. If the key is held down, the action auto-repeats.

<Left> any For horizontal scrollbars, shifts view in the associated widget left by one unit so
document appears to move right. If the key is held down, the action auto-repeats.

<Right> any For horizontal scrollbars, shifts view in the associated widget right by one unit so
document appears to move left. If the key is held down, the action auto-repeats.

<Control-Up> any For vertical scrollbars, shifts view in the associated widget up by one screenful so
document appears to move down. If the keys are held down, the action auto-repeats.

<Control-Down> any For vertical scrollbars, shifts view in the associated widget down by one screenful so
document appears to move up. If the keys are held down, the action auto-repeats.

<Control-Left> any For horizontal scrollbars, shifts view in the associated widget left by one screenful so
document appears to move to the right. If the keys are held down, the action 
auto-repeats.

<Control-Right> any For horizontal scrollbars, shifts view in the associated widget to the right by one
screenful so document appears to move to the left. If the keys are held down, the
action auto-repeats.

<Prior> Shifts view in the associated widget up or to the left by one screenful so document
appears to move down or to the right. If the button is held down, the action 
auto-repeats.

<Next> Shifts view in the associated widget down or to the right by one screenful so
document appears to move up or to the left. If the button is held down, the action 
auto-repeats.

<Home> Adjusts view to the very top or left of the document.

<End> Adjusts view to the very bottom or right of the document.



3.24 Spinbox Widget
Command Description 

spinbox 
pathName
?options? 

(Tk 8.4+) Creates a spinbox widget pathName with options and returns the new widget’s path name.
When invoked, pathName must not exist, but pathName’s parent should. A spinbox consists of an
editable entry field and two arrow button to move, or spin, through a fixed set of ascending or
descending values. 

Spinbox Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-activebackground -highlightthickness -repeatinterval

-background -insertbackground -selectbackground
-borderwidth -insertborderwidth -selectborderwidth
-cursor -insertofftime -selectforeground
-exportselection -insertontime -takefocus
-font -insertwidth -textvariable
-foreground -justify -xscrollcommand
-highlightbackground -relief
-highlightcolor -repeatdelay

Spinbox Widget Specific

See Coordinates in Options and Resources for screen unit options. See Colors in Options and Resources for color formats.

Configure Option Resource Name Resource Class Description

-buttonbackground 
color

buttonBackground Background Specifies background color for the spin buttons.

-buttoncursor cursor buttonCursor Cursor Specifies cursor to use when over the spin
buttons. If set to an empty string (default), the
default cursor will be used. See Cursors in 
Options and Resources for options.

-buttondownrelief 
relief

buttonDownRelief Relief Specifies relief for the upper spin button. Options
are: flat , groove, raised,ridge, solid, or sunken.

-buttonuprelief  relief buttonUpRelief Relief Specifies relief for the lower spin button. Options
are: flat , groove, raised,ridge, solid, or sunken.

-command script command Command Tcl command to invoke when spinbutton is
invoked. Recognizes %W, %s, and %d 
substitutions.

-disabledbackground 
color

disabledBackground DisabledBackground Background color of widget when the spinbox is
disabled. If set to the empty string, the normal
background color is used.

-disabledforeground 
color

disabledForeground DisabledForeground Foreground color of widget when the spinbox is
disabled. If set to the empty string, the normal
foreground color is used.

-format  format format Format Specifies alternate format for setting string value. 
Format is %#.#f.

-from  value from From Specifies lowest floating point value for spinbox.



-invalidcommand 
script

invalidCommand InvalidCommand Specifies script to eval when -validcommand
returns 0. If set to the empty string (default),
disables option. Typically set to bell. See Percent 
Substitutions below for valid % substitutions.
(Also -invcmd).

-increment value increment Increment Specifies floating poiunt value to add to or
subtract from the spinbox’s value when the
buttons are selected.

-readonlybackground 
color

readonlyBackground ReadonlyBackgroundBackground color of widget when the spinbox is
read-only. If set to the empty string, the normal
background color is used.

-state state state State State of button. Options are: disabled (cannot
change or select contents, use 
disabledforeground and 
disabledbackground),normal (can change and
select contents, use foreground and 
background),readonly (cannot change but can
select contents, use foreground and 
readonlybackground ).

-to value to To Specifies highest floating point value for 
spinbox.

-validate mode validate Validate Specifies validation mode. See Validation Types
below for options.

-validatecommand 
script

validateCommand ValidateCommand Specifies script to eval when spinbox input is to
be validated. If set to the empty string (default),
disables option. Script must return 1 to accept or
0 to reject new value. See Percent Substitutions
below for valid % substitutions. (Also -vcmd).

-values valueList values Values Specifies list of valid values for spinbox.

-width width width Width Width of spinbox window in font average-sized
characters. If <=0, auto size based on current 
text.

-wrap boolean wrap Wrap Specifies whether values larger than spinbox are 
wrapped.

Validation Types
Type Description

none Do not perform validation (default). 

focus -validatecommand will be called when the spinbox receives or loses focus. 

focusin -validatecommand will be called when the spinbox receives focus. 

focusout -validatecommand will be called when the spinbox loses focus. 

key -validatecommand will be called when the spinbox is edited. 

all -validatecommand will be called for all above conditions. 

Percent Substitutions



Sub Description

%d Type of action: 1 for insert, 0 for delete, or -1 for focus, forced, or textvariable validation. 

%i Index of char string to be inserted/deleted, if not -1. 

%P
The value of the spinbox should -validatecommand accept the new value. When configuring to a new textvariable,
this will be the value of that textvariable. 

%s The current value of the spinbox before -validatecommand accepts the new value. 

%S The text string being inserted/deleted, if not an empty string {}. 

%v The current validation type (none, focus ,focusin,focusout,key, or all). 

%V The type of validation that triggered the callback (key,focusin,focusout,forced). 

%W The name of the spinbox widget. 

Indicies or Character Positions
Some spinbox commands support the use of an index to locate the position of characters within the spinbox string starting
from 0. The following are the valid forms of specifying an index:

Index 
form

Description

number A decimal number giving the position or index (starting from 0) of the desired character within the spinbox
string. If number < 0, the 0 is used, if number > length of text list, then end is used.

anchor Selection anchor point as set by the select from and select adjust commands.

end Character or coordinate just after last one in spinbox’s string.

insert Character just after the insertion cursor.

sel.first First character in selection. Returns an error if selection is not in the spinbox.

sel.last Character just after last character in selection. Returns an error if selection is not in the spinbox.

@number Character at the x-coordinate point in the spinbox’s window. If x is outside the spinbox window’s range, it is
set to the nearest legal value.

Spinbox Widget Commands 
Command Description 

pathName bboxindex
Returns a list of four elements x y w h , giving an approximate bounding box for the character
at position index . Coordinates x,y are top-left corner of character at index,w is width of char,
and h is height of char in pixels.

pathName cget option Returns the current value of the configuration option. See Spinbox Widget Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option tovalue. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty string is returned. See Spinbox Widget Options above for options.

pathName delete first 
?last?

Delete characters in spinbox’s string from position first up to but not including position last
(default is first+1 to delete 1 character). See Indicies or Character Positions above for first and 
last options.

pathName get Returns the spinbox’s string.

pathName icursor index Display the insertion cursor just before the character at position index. See Indicies or Char 
Positions above for index options.

pathName identify  x y Returns the name of the window element at position x and y in the spinbox. Options are: none 
,buttondown,buttonup, or entry.

pathName index index Returns the numerical index corresponding to index. See Indicies or Character Positions above
for index options.



pathName insert index 
string

Insert string just before the character at position index. See Indicies or Character Positions
above for index options.

pathName invoke 
element

Invokes the specified element, where element is buttondown or buttonup.

pathName scan option 
args

Implements scanning on spinbox widgets. Options are:

mark  x Records x and the current view in the spinbox window. Typically associated with mouse
button press in widget.

dragto x Adjusts the view by 10 times the difference between the coordinate xmark  x coordinate. Used
with mouse motion events to produce high speed dragging.

and the last 

pathName selection
option arg

Manipulates the selection within an spinbox based on option. See Indicies or Char Positions
above for index options. Vaild options and args are:

adjust index Adjust the end of the selection nearest to the character given by position index to include
characters up to index and set the other end to be the anchor point. Works the same as 
selection to if selection is not in spinbox widget.

clear Clear the selection if it is in the widget.

element ?element? Sets the current selection to element. Without element, returns the currently selected element.

from  index Sets the selection anchor point to the character given by position index.

present Returns 1 if characters are selected in the spinbox, 0 if not.

range start end Sets the selection to include characters from position start up to but not including position end.

to index If index < anchor point, set the selection to include characters from position index up to but not
including the anchor point. If index > anchor point, set the selection to include characters from
the anchor point up to but not including position index. If index = anchor point, no change is
made. If the selection isn’t in the spinbox widget, use the most recent anchor point specified
for the widget.

pathName set ?string? Sets spinbox to string. Without string, returns the current spinbox’s string.

pathNamevalidate Forces the evaluation of -validatecommand by temporarily setting validate to all and returns 
result.

pathName xview ?option 
args?

Query or change the horizontal view of the spinbox. Without any options, returns a two
element list specifying the start and end of the visible fraction (from 0 to 1) of the horizontal
span of the widget between the left and right edges of the window. Vaild options and args

are: 

index Adjust window view to display the character at position index at the left edge of window. See 
Indicies or Char Positions above for index options.

moveto fraction Adjust window view so that fraction (from 0 to 1) of the total width of the widget is off-screen
to the left.

scroll number pages Shift the view left (number < 0) or right (number > 0) by number screenfuls.

scroll number units Shift the view left (number < 0) or right (number > 0) by number average-width characters.

Default Spinbox Widget Bindings
For additional default bindings see Virtual Events in Bindings and Virtual Events.



Event Description

<Button-1> Positions the insertion cursor just before the character underneath the mouse cursor,
sets the input focus to this widget, and clears any selection in the widget.

<B1-Motion> Drags out a selection (in words if double clicked) between the insertion cursor and the
character under the mouse.

<Double-Button-1> Selects the word under the mouse and positions the insertion cursor at the beginning of
the word.

<Triple-Button-1> Selects all of the text in the spinbox and positions the insertion cursor before the first 
character.

<Shift-B1-Motion> Adjusts the end of the selection (in words if double clicked) that was nearest to the
mouse cursor when button 1 was pressed.

<Control-Button-1> Position the insertion cursor in the spinbox without affecting the selection.

<B1-Leave> Adjusts view in spinbox left or right more quickly.

<B1-Enter> Stops adjustment of view in spinbox left or right more quickly.

<Button-2> Paste selection into the spinbox at the position of the mouse cursor.

<B2-Motion> Adjusts view in spinbox by scrolling left or right.

<Left> or <Control-b> Moves the insertion cursor one character back (left), clears any selection in the
spinbox, and sets the selection anchor.

<Right> or <Control-f> Moves the insertion cursor one character forward (right), clears any selection in the
spinbox, and sets the selection anchor.

<Shift-Left> Move the insertion cursor one character back (left) and extend the selection to include
the new character.

<Shift-Right> Move the insertion cursor one character forward (right) and extend the selection to
include the new character.

<Control-Left>  or <Meta-b> Move the insertion cursor back (left) by one word, clears any selection in the spinbox,
and sets the selection anchor.

<Control-Right>  or <Meta-f> Move the insertion cursor forward (right) by one word, clears any selection in the
spinbox, and sets the selection anchor.

<Shift-Control-Left> Move the insertion cursor back (left) by one word and also extend the selection.

<Shift-Control-Right> Move the insertion cursor forward (right) by one word and also extend the selection.

<Home> or <Control-a> Move the insertion cursor to the beginning of the spinbox and clear any selection in the 
spinbox.

<Shift-Home> Move the insertion cursor to the beginning of the spinbox and also extends the
selection to that point.

<End> or <Control-e> Move the insertion cursor to the end of the spinbox and clear any selection in the 
spinbox.

<Shift-End> Move the insertion cursor to the end of the spinbox and also extends the selection to
that point.

<Select> or <Control-Space> Set the selection anchor to the position of the insertion cursor without affecting the 
selection.

<Shift-Select> or 
<Shift-Control-Space>

Adjusts the selection to the current position of the insertion cursor, selecting from the
anchor to the insertion cursor if there is not an existing selection.

<Control-slash> Selects all the text in the spinbox.

<Control-backslash> Clears any selection in the spinbox.

<Delete> Deletes the selection, if there is one in the spinbox, if not it deletes the character to the
right of the insertion cursor.

<BackSpace> or <Control-h> Deletes the selection, if there is one in the spinbox, if not it deletes the character to the
left of the insertion cursor.

<Control-d> Deletes the character to the right of the insertion cursor.

<Meta-d> Deletes the word to the right of the insertion cursor.

<Control-k> Deletes all the characters to the right of the insertion cursor.

<Control-t> Reverses the order of the two characters to the right of the insertion cursor.

<Keypress> Insert character into spinbox widget.



3.25 Text Widget
Command Description 

text pathName
?options? 

Creates a text widget pathName with options and returns the new widget’s path name. When invoked, 
pathName must not exist, but pathName’s parent should. A text widget displays one or more lines of
text and can allow that text to be edited.

tk_textCopy 
pathName

(Tk 8.4+) Copies the selection in text widget pathName to the clipboard.

tk_textCut  
pathName

(Tk 8.4+) Copies the selection in text widget pathName to the clipboard and deletes it from the text 
widget.

tk_textPaste 
pathName

(Tk 8.4+) Inserts the contents of the clipboard into text widget pathName at the position of the
insertion cursor.

Text Widget Options
Standard

See Common Options and Resources in Options and Resources for full details.

-background -highlightthickness -relief

-borderwidth -insertbackground -selectbackground

-cursor -insertborderwidth -selectborderwidth

-exportselection -insertofftime -selectforeground

-font -insertontime -setgrid

-foreground -insertwidth -takefocus 

-highlightbackground -padx -xscrollcommand

-highlightcolor -pady -yscrollcommand 

Text Widget Specific

See Coordinates in Options and Resources for screen unit options.



Configure Option Resource Name Resource Class Description

-autoseparators boolean autoSeparators AutoSeparators(Tk 8.4+) Specifies whether separators are
automatically inserted in the undo stack.
Used with -undo. Common to all peers. 

-blockcursor blockCursor BlockCursor 
(Tk 8.5+) Specifies whether the insertion
cursor should be drawn as a block (true) or
thin vertical line (false or default).

-endline endLine EndLine

(Tk 8.5+) Specifies index of the last line of
the underlying textual data store that
should be shown. Default is {}, which sets
the end to after the last line.

-height size height Height Height of text widget in lines of -font sized 
text.

-inactiveselectionbackgroundinactiveSelectionBackgroundForeground 
(Tk 8.5+) Specifies color of the selection,
or {} for no selection, when the window
does not have the input focus.

-maxundo count maxUndo MaxUndo (Tk 8.4+) Specifies the max number of
compound undo actions on the undo stack.
If count <= 0, use an unlimited undo stack. 
Common to all peers. 

-spacing1 size spacing1 Spacing1 Space in screen units above first line of a 
paragraph. 

-spacing2 size spacing2 Spacing2 Space in screen units between lines within
a paragraph. 

-spacing3 size spacing3 Spacing3 Space in screen units below the last line of
a paragraph. 

-startline startLine StartLine 

(Tk 8.5+) Specifies index of the first line
of the underlying textual data store that
should be shown. Default is {}, which sets
the start to before the first line. 

-state state state State State of text widget. Options are: disabled
or normal.

-tabs tabList tabs Tabs Specifies a list of tab stops consisting of
offset values from the left edge in screen
units followed by an optional justification
of either left (default) with the left edge of
text at tab position, right  with text at tab
position, center with the text centered at
the tab position, or numeric with decimal
point in the text is positioned at the tab
position. If set to { }  the default 8-character
tab stops are used.

-undo boolean undo Undo (Tk 8.4+) Specifies whether the undo
mechanism is active. Common to all peers.

-width  size width Width Width of text widget in -font sized
characters. For proportional fonts, width of
"0" is used.

-wrap type wrap Wrap Specifies how to wrap lines wider than the
window. Options are: char (line break can
be made after any character), none (no
wrap), or word (line break can only be
made at word boundaries). 



Indicies or Character Positions:
Some text widget commands support the use of an index to locate the position of characters within the text widget. Indicies
have the syntax:
base modifier modifier modifier ...
The following are the valid forms for base:

Base Description
line.char Indicates line line (starts at 1) and character char (starts at 0).

@x,y Indicates the character that covers the pixel at position x and y.

end Indicates the character at the end of the text, just after the newline.

mark Indicates the character just after the mark whose name is mark.

tag.first Indicates the first character in the text that has been tagged with tag. If no characters are tagged, an error will
be generated.

tag.last Indicates the character just after the last one in the text that has been tagged with tag. If no characters are
tagged, an error will be generated.

pathName Indicates the position of the embedded window whose name is pathName. If pathName doesn’t exist, an
error is generated.

imageNameIndicates the position of the embedded image whose name is imageName. If imageName doesn’t exist, an
error is generated.

The following are the valid forms for modifier:

Modifier Description
+count
?submodifer? 
chars

Adjust the index forward by count characters, moving to later lines in the text if necessary or to the last
character in the text if fewer than count characters remain. In Tk 8.5+, use the display submodifier to
skip and not count elided characters and any to count all characters (default).

-count 
?submodifer? 
chars

Adjust the index backwards by count characters, moving to earlier lines in the text if necessary or to the
first character in the text if fewer than count characters remain. In Tk 8.5+, use the submodifier display
to skip and not count elided characters and any to count all characters (default). 

+count 
?submodifer? 
indicies

(Tk 8.5+) Adjust the index forward by count index positions, moving to later lines in the text if
necessary. If there are fewer than count index positions in the text after the current index, then set the
index to the last index position in the text. In Tk 8.5+, use the submodifier display to skip and not count

elided indicies and any to count all indicies (default).

-count 
?submodifer? 
indicies

(Tk 8.5+) Adjust the index backward by count index positions, moving to earlier lines in the text if
necessary. If there are fewer than count index positions in the text before the current index, then set the
index to the first index position (1.0) in the text. In Tk 8.5+, use the submodifier display to skip and not
count elided indicies and any to count all indicies (default).

+count 
?submodifer? 
lines

Adjust the index forward by count lines or to the last line if less than count remain, without changing
the character position within the line or to the last character in the line (newline char) if fewer
characters than the character position are available. In In Tk 8.5+, use the submodifier display to count
visual lines and any to count logical lines (default). 

-count 
?submodifer? 
lines

Adjust the index backwards by count lines or to the first line if less than count remain, without
changing the character position within the line or to the last character in the line (newline char) if fewer
characters than the character position are available. In In Tk 8.5+, use the submodifier display to count
visual lines and any to count logical lines (default). 

linestart Adjust the index to refer to the first character on the line.

lineend Adjust the index to refer to the last character on the line (newline char).

wordstart Adjust the index to refer to the first character of the word (consists of letters, digits, underscores, or any
other single char) containing the current index.

wordend Adjust the index to refer to the last character of the word (consists of letters, digits, underscores, or any
other single char) containing the current index.



Annotations
Annotation Description
Tag Tags are a textual string identifiers that can be associated with a single character, range of characters, or

several ranges of characters in the text widget. There can be an unlimited number of tags within a text
widget and any number associated with any particular character. Deleting a character also removes the tag
for that text. The default prority order for tags is based on the order defined, with the latest having the
highest prioity. When tags conflict, the tag with the highest priority is used. See Tag Options below.
The sel tag is associated with the current selection if the -exportSelection option is true. The sel tag can not
be deleted. See Selection Support below. The sel tag may be set and configured (in its display style)
differently for each peer. 

Mark Marks are textual strings that are used as floating markers in the text to keep track of particular places in the
text as it is edited. Marks are associated with the gap between two characters and a single position can only
be associated with one mark. Deleting the characters around a mark does not delete the mark. Marks have a
gravity of left or right  (default), which defines what happens to the mark (which text it stays with) when
text is inserted at the point of the mark.
The insert mark is associated with the insertion cursor and thecurrent  mark is associated with the character
closest to the mouse pointer unless the mouse button is held down. The insert and current  marks can not
be deleted. Each peer has its own insert and current mark positions (but all other marks are shared)

Embedded 
Windows

Embedded windows allow any number of widgets to be embedded in a text widget which will dynamically
update as the text is modified or scrolled. They will be mapped and unmapped when moved into and out of
the visible area of the text widget. Each embedded window occupies one character’s worth of index space
in the text widget, and it may be referred to either by its name or by its position in the widget’s index space.
If the range of text containing the embedded window is deleted then the window is destroyed. See 
Embedded Window Options below. Embedded windows, which are arbitrary other widgets, cannot be
shared between peers. 

Embedded 
Images

Embedded images allow any number of images to be embedded in a text widget. An image may be
embedded multiple times. The image positions will be updated as text is updated ot scrolled. Each
embedded image occupies one character’s worth of index space in the text widget, and it may be referred to
either by its name or by its position in the widget’s index space. If the range of text containing the
embedded image is deleted then the image is removed. See Embedded Image Options below.

Tag Options 

See Colors, Coordinates, or Default Bitmaps in Options and Resources for color, screen unit, and bitmap options,
respectively. See Fonts for font options.



Option Description

-background 
color

Specifies the background color to use for characters associated with the tag.

-bgstipple 
bitmap

Specifies a bitmap that is used as a stipple pattern for the background. A solid fill will be used as the
default option or if set to an empty string. 

-borderwidth  
pixels

Specifies the width of a 3-D border to draw around the background in screen units.

-elide boolean (Tk 8.3+) Specifies whether the data should be elided. Elided data is not displayed and takes no space on
screen, but further on behaves just as normal data.

-fgstipple 
bitmap

Specifies a bitmap that is used as a stipple pattern for the foreground. A solid fill will be used as the
default option or if set to an empty string. 

-font fontNameSpecifies the name of the font to use for drawing characters.

-foreground 
color

Specifies the foreground color to use for characters associated with the tag.

-justify  justify Specifies how to justify text only if the first character in a line has a tag with this option. Options are left, 
right , or center.

-lmargin1 size Specifies the left margin or indentation in screen units for the first line in a paragraph. The first character
in the text line must have the tag in order to take effect.

-lmargin2 size
Specifies the left margin or indentation in screen units for the subsequent lines in a paragraph. The first
character in the text line must have the tag in order to take effect. 

-offset size
Specifies the amount in screen units by which the text’s baseline should be offset vertically from the
baseline of the overall line. Use a positive offset for superscripts and a negative offset for subscripts. 

-overstrike 
boolean

Specifies whether to draw a horizontal rule through the middle of characters. 

-relief relief Specifies the 3-D relief to use for drawing backgrounds. Options are: flat , groove, raised, ridge, solid, or 
sunken.

-rmargin size
Specifies the right margin in screen units for lines in a paragraph. The first character in the text line must
have the tag in order to take effect. 

-spacing1 size Specifies the space in screen units above first line of a paragraph with this tag.

-spacing2 size Specifies the space in screen units between lines within a paragraph with this tag.

-spacing3 size Specifies the space in screen units below the last line of a paragraph with this tag.

-tabs tabList

Specifies a list of tab stops consisting of offset values from the left edge in screen units followed by an
optional justification. The first character in the text line must have the tag in order to take effect. Options
are: left (default) with the left edge of text at tab position, right  with text at tab position, center with the
text centered at the tab position, or numeric with decimal point in the text is positioned at the tab
position. If set to { }  the default 8-character tab stops are used.

-underline 
boolean

Specifies whether to underline text. 

-wrap mode Specifies how to wrap lines wider than the window. Options are: char (line break can be made after any
character), none (no wrap), or word (line break can only be made at word boundaries).

Embedded Window Options 

See Coordinates in Options and Resources for screen unit options.



Option Description

-align where
Specifies window alignment if smaller than line height. Options are: top (align the top of window with the
top of the text), center (center window within line), bottom (align the bottom of window with the bottom
of the text), or baseline (align the bottom of window with the baseline of the text). 

-create 
script

Specifies script to create and return window pathname if no -window option is given. 

-padx width Specifies extra space in screen units to leave on the left and right side of window. 

-pady height Specifies extra space in screen units to leave at the top and bottom of window. 

-stretch 
boolean

Specifies whether window should be stretched vertically to fill line if less than the height of the line. 

-window 
pathName

Specifies the name of window to display in the embedded window. 

Embedded Image Options 

See Coordinates in Options and Resources for screen unit options.

Option Description

-align where
Specifies image alignment if smaller than line height. Options are: top (align the top of image with the top
of the text), center (center image within line), bottom (align the bottom of image with the bottom of the
text), or baseline (align the bottom of image with the baseline of the text). 

-image image Specifies the name of the image to embed. Returns error if image is not a valid image. 

-name 
imageName

Specifies the name to use for referencing the embedded image. Appends #nn if imageName is already in
use. Without -name, -image is used instead. Once an image is assigned a name, it cannot be changed with 
image configure.

-padx width Specifies extra space in screen units to leave on the left and right side of the image. 

-pady height Specifies extra space in screen units to leave at the top and bottom of the image. 

Selection Support

The selectBackground, selectBorderWidth, and selectForeground options for the text widget are tied to the 
-background,-borderwidth , and -foreground options for the sel tag. Changes in either will automatically be reflected in
the other.

# Selection Criteria
1 Whenever characters are tagged with sel the text widget will claim ownership of the selection.

2 Attempts to retrieve the selection will be serviced by the text widget, returning all the characters with the sel tag.

3
If the selection is claimed away by another application or by another window within this application, then the sel tag
will be removed from all characters in the text.

4 (Tk 8.4+) Whenever the sel tag range changes a virtual event <<Selection>> is generated.

Undo Mechanism
(Tk 8.4+) If the -undo option is true, the text widget supports an unlimited undo and redo mechanism which records each
insert and delete action in a stack. Boundaries (called "separators") are inserted between edit actions in order to group
compound edits. An undo, uses all actions between separators then transfers them to the redo stack. The redo stack is
cleared whenever new edit actions are recorded on the undo stack. Separators are inserted automatically when the 
-autoseparators option is true. The undo mechanism is also linked to the modified flag so undoing or redoing an edit can
restore a text widget back to the unmodified or vice versa. Manual changes to the modified flag disable the automatic
coupling until the flag has been reset.



Text Widget Commands 
Command Description 

pathName bbox index
Returns a four element list with the upper left corner x and y coordinates, width, and height of
the character or element at index. Only the visible portion will be returned or an empty list if not 
visible. 

pathName cget option Returns the current value of the configuration option. See Standard Options and Text Widget
Specific Options above for options.

pathName compare 
index1 op index2

Compares the characters at indices index1 and index2 according to relational operator op and
returns 1 if true, 0 if not. Op can be: <, <=, ==, >=, >, or !=. 

pathName configure
?option? ?value?
?option value ...?

Changes the configuration option tovalue. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty string is returned. See Text Options above for options. Configuration options of each peer
can be set independently except as indicated in the options above.

pathName count
?options? index1 
index2

(Tk 8.5+) Counts the number of relevant things between the two indices and returns a list of
integers based on options. If index1 is after index2, the result will be a negative number.

-chars Count all characters, whether elided or not. Do not count embedded windows or images.

-displaychars Count all non-elided characters.

-displayindices Count all non-elided characters, windows and images.

-displaylines 
Count all display lines from the line of the index1 up to, but not including the display line of 
index2.

-indices 
Count all characters, embedded windows, and embedded images whether they are elided or not.
Default option.

-lines 
Count all logical lines (irrespective of wrapping) from the line of index1 up to, but not including
the line of index2.

-update Used before -ypixels to ensure that any possible out of date information is recalculated.

-xpixels 
Count the number of horizontal pixels from the first pixel of index1 to (but not including) the
first pixel of index2.

-ypixels 
Count the number of vertical pixels from the first pixel of index1 to (but not including) the first
pixel of index2.

pathName debug 
?boolean?

Specified whether internal consistency checks will be turned on for text widgets. In Tk 8.4+,
global vars tk_textRedraw and tk_textRelayout are set to the indices that are redrawn. Without 
boolean, returns debugging status.

pathName delete 
index1 ?index2 ...?

Deletes contents of text widget from index1 to just before index2, if specified, and index2 > 
index1 or just the character at index1. Newline characters can not be deleted. In Tk 8.4+,
multiple ranges can be specified. 

pathName dlineinfo 
index

Returns a five element list with the upper left corner x and y coordinates, width, height, and
baseline in pixels of the display line containing index. Includes the portion of the line outside the
window boundaries if no line wrap. If line the containing index is not visible, an empty list is 
returned. 

pathName dump 
?options? index1 
?index2?

Returns contents of text widget from index1 to just before index2, if specified, or just at index1 in
repeating key value index format. Key values are text,mark ,tagon,tagoff, and window. Value is
the text, mark name, tag name, or window name. Index is the start index of the text, mark, tag
transition, or window. Options are: 



-all Return information about all elements

-command command Invokes command with args key,value, and index for each text widget element within the range
of indicies instead of returning it. 

-image (Tk 8.3.x+) Include image info in the dump results

-mark Include mark info in the dump results.

-tag Include tag transitions info (tagon andtagoff) in the dump results.

-text Include text up to next element, newline, or index2 in the dump results. Newlines are included in
the dump.

-window Include embedded windows info in the dump results. Returns window pathname or empty string
if not created yet.

pathName edit option
?arg ...?

(Tk 8.4+) Controls the undo mechanism and the modified flag. Options are:

modified ?boolean? Sets the text widget modified flag. Without boolean, returns current state.

redo If -undo is true, reapplies last undo edit if no edits have occurred since then. Generates error if
redo stack is empty.

reset Clears the undo and redo stacks.

separator If -undo is true, inserts a separator (boundary) on the undo stack.

undo If -undo is true, undoes last edit action (all insert, delete, etc. commands between two
separators). Generates error if undo stack is empty. 

pathName get
?options? ?--? index1
?index2 ...?

Returns only characters from index1 to just before index2, if specified, and index2 > index1, or
just at index1. An invalid range returns the empty string. In Tk 8.4+, multiple ranges can be
specified and will be returned in the specified order. Options are:

-displaychars (Tk 8.5+) Specifies that only those characters which are not elided will be returned. 

pathName image 
option ?arg ...?

Controls embedded images. See Annotations above for more details on embedded images.
Options are:

cget index option
Return current value of option for embedded image at index. For options, see Embedded Image 
Options above. 

configure index
?option value ...?

Changes the embedded image configuration option to value. Without value, a list describing 
option is returned. Without option, a list of all available options for the image at index is
returned. For multiple options an empty string is returned. For options, see Embedded Image 
Options above. 

create index ?option
value ...?

Create a new embedded image at position index with the specified options. For options, see 
Embedded Image Options above. 

names Returns a list of the names of all embedded images in the text widget. 

pathName index index Returns the position of index in line.char notation. See Indicies or Character Positions above. 

pathName insert index
chars ?tagList? ?chars
tagList ...?

Inserts the char args just before the character at index using each tag in tagList. If index is at the
end of the text (character after the last newline), then the new text is inserted just before the last
newline instead. Without tagList, the new text will only use tags present in both the character at 
index and before index. Multiple char tagList args can be used. 

pathName mark  option
?arg ...? Controls marks. See Annotations above for more details on marks. Options are:



gravity  markName 
?direction?

Specifies which adjacent character or direction (left or right ) markName is attached to. Without 
direction, returns current gravity. 

names Returns a list of the names of all marks currently set. 

next index Returns name of next mark at or after index . Search starts at index unless its the name of a mark
in which case it starts at the next mark. Returns empty string if no marks are left. 

previous index
Returns name of previous mark at or before index. Search starts at the character before index
unless its the name of a mark in which case it starts before the mark. Returns empty string if no
marks are left. 

set markName index Creates mark markName or moves it if it already exists to just before the character at index. 

unset markName
?markName ...?

Removes each specified mark so they are no longer usable as indices. 

pathName peeroption 
?args?

(Tk 8.5+) Used to create and query widget peers. A peer widget has complete access to
pathName widget’s data while maintaining separate config options except as noted in the config
options above.

create newPathName
?options? 

Creates a peer text widget with the given newPathName, and any specified config options. By
default the peer will have the same start and end line as the parent widget.

names Returns a list of peers of this widget excluding this widget.

pathName replace
index1 index2 chars
?tagList? ?chars tagList
...? 

(Tk 8.5+) Replaces the range of characters from index1 to just before index2 with the given
characters and tags in tagList. Without tagList, the new text will only use tags present in both the
character at index1 and index2. 

pathName scan option 
args

Controls scanning on text widgets. Options are:

mark  x y Records x and y and the current view in the text widget. Typically associated with mouse button
press in widget at coordinates x,y.

dragto x y Adjusts the view by 10 times the difference between the coordinates x,y and the last mark  x ,y
coordinates. Used with mouse motion events to produce high speed dragging effect.

pathName search 
?switches? ?--? pattern
index ?stopIndex?

Searches for a match to pattern in the range of text from index to stopIndex, if specified, or back
to index and returns the index of the match. Without stopIndex, the search wraps around at the
end/beginning of the text. The matching range must be entirely within a single line of text.
Switches are:

-all 
(Tk 8.5+) Find all matches in the given range and return a list of the indices of the first character
of each match. 

-backwards Search backwards in the text from index . 

-count varName Stores the length of the matched text and elements in varName. Used with -all, returns a list of 
counts.

-elide (Tk 8.3+) Find elidden (hidden) text as well. By default only displayed text is searched.

-exact The characters must exactly match pattern . Newlines are not removed from the line end before
checking for a match. (Default)

-forwards Search forward in the text from index. (Default) 

-nocase Ignore case differences between pattern and the text.

-nolinestop (Tk 8.5+) Used with -regexp to allow . and [^ sequences to match the newline character \n.

-overlap 
(Tk 8.5+) Used with -all, so that all matches which are not totally enclosed within another match
are returned. Default is that matches which overlap an already-found match will not be returned.

-regexp Use Regular Expression pattern matching. Newlines are removed from the line end before
checking for a match. 

pathName see index
Adjust the view in window so character at index is completely visible. For small adjustments the
text is scrolled just enough to see the text. For large adjustments, the text is centered in the 
window. 

pathName tag option
?arg ...?

Controls tags. See Annotations above for more details on tags. Options are: 



add tagName index1
?index2 index1 index2 
...?

Apply tag tagName to characters in given range from index1 to just before index2. Multiple
ranges are supported. 

bind tagName
?sequence? 
?command?

Create a binding to evaluate command whenever event in sequence occurs within the characters
or elements associated with tagName. See bind command for options. Only mouse, keyboard,
and virtual events can be used. An Enter event for a tag triggers when the tag first becomes
present on the current character, and a Leave event triggers when it ceases to be present on the
current character. Enter and Leave events can happen either because the current mark moved or
because the character at that position changed. When a character has multiple tags with bindings,
only one binding is invoked for each tag in lowest to highest priority order. If there are multiple
bindings for a tag, the most specific binding is used. If bindings exist for the parent widget, they
will be invoked after the tag bindings. 

cget tagName option Return current value of option for tagtagName. For options, see Tag Options above. 

configure tagName
?option? ?value?
?option value ...?

Changes the tag tagName configuration option to value. Without value, a list describing option is
returned. Without option, a list of all available options for the image at index is returned. For
multiple options an empty string is returned. For options, see Tag Options above.

delete tagName
?tagName ...?

Delete all tag information (tags from characters, bindings, etc.) for each tagName arg. 

lower tagName 
?belowThis?

Change priority of tag tagName so it is just below tag belowThis or without belowThis below all 
tags. 

names ?index? Returns a list of the names of all tags associated with character at index in increasing prioity
order. Without index,a list of all defined tags is returned. 

nextrange tagName
index1 ?index2?

Searches between index1 to just beforeindex2 (default is end of text) for the first region tagged
with tagName. Returns a two element list with the character range (start and end+1) of region
found or empty string if none.

prevrange tagName
index1 ?index2?

Searches between just before index1 toindex2 (default is index 1.0) for the first region tagged
with tagName . Returns a two element list with the character range (start and end+1) of region
found or empty string if none. 

raise tagName 
?aboveThis?

Change priority of tag tagName so it is just above tag aboveThis or without aboveThis above all 
tags. 

ranges tagName Returns a list describing all character ranges tagged with tagName. Each pair of elements
contains the start and end+1 index for that range. If no matches are found an empty list is 
returned. 

remove tagName
index1 ?index2 index1
index2 ...?

Remove tag tagName from all characters in given range from index1 to just before index2, if
specified, and index2 > index1, or just at index1. Multiple ranges are supported. 

pathName window 
option ?arg ...?

Controls embedded windows. See Annotations above for more details on embedded windows.
Options are: 

cget index option Return current value of option for embedded window at index. For options, see Embedded
Window Options above. 

configure index
?option value ...?

Changes the embedded window configuration option tovalue. Without value, a list describing 
option is returned. Without option, a list of all available options for the image at index is
returned. For multiple options an empty string is returned. For options, see Embedded Window 
Options above. 

create index ?option
value ...?

Create a new embedded window at position index with the specified options. For options, see 
Embedded Window Options above. 

names Returns a list of the names of all embedded windows in the text widget. 

pathName xview 
?option args?

Query or change the horizontal text widget view. Without any options, a two element list is
returned specifying the start and end of the visible fraction (from 0 to 1) of the horizontal span of
the widget between the left and right edges of the window. Vaild options and args are:



moveto fraction
Adjust the view in the window so that fraction (from 0 to 1) of the total width of the widget is
off-screen to the left. 

scroll number pages Shift the view left (number < 0) or right (number > 0) by number screenfuls.

scroll number units Shift the view left (number < 0) or right (number > 0) by average-width number of characters on
the display.

pathName yview 
?option args?

Query or change the vertical text widget view. Without any options, a two element list is
returned specifying the start and end of the visible fraction (from 0 to 1) of the vertical span of
the widget between the top and bottom edges of the window. Vaild options and args are:

moveto fraction Adjust the view in the window so that fraction (from 0 to 1) of the total height of the widget is
off-screen to the top.

scroll number pages Shift the view up (number < 0) or down (number > 0) by number screenfuls. 

scroll number units Shift the view up (number < 0) or down (number > 0) by number lines. 

?-pickplace?index

(Obsolete) Changes the view in the widget’s window to make index visible using the following
criteria: if index is already visible then don’t do anything, if index is a few lines off-screen above
the window position it at the top of the window, if index is a few lines off-screen below the
window position it at the bottom of the window, otherwise center index in the window.

number (Obsolete) Makes the first character on the line after the one given by number visible at the top
of the window.

Default Text Widget Bindings
For additional default bindings see Virtual Events in Bindings and Virtual Events.

Event Description

<Button-1> Positions the insertion cursor just before the character underneath the mouse
cursor, sets the input focus to this widget, and clears any selection in the widget.

<B1-Motion> Drags out a selection (in words if double clicked or lines if triple clicked) between
the insertion cursor and the character under the mouse.

<Double-Button-1> Selects the word under the mouse and positions the insertion cursor at the
beginning of the word.

<Triple-Button-1> Selects all of the text on the line and positions the insertion cursor before the first 
character.

<Shift-B1-Motion> Adjusts the end of the selection (in words if double clicked or lines if triple
clicked) that was nearest to the mouse cursor when button 1 was pressed.

<B1-Leave> Adjusts the view in the widget in the direction that the mouse left the window
more quickly.

<B1-Enter> or <ButtonRelease-1> Stops cancel repeat.

<Control-Button-1> Position the insertion cursor in the widget without affecting the selection. 

<Button-2> Paste selection into the widget at the position of the mouse cursor.

<B2-Motion> Adjusts view in widget by scrolling in the direction of the mouse movement.

<MouseWheel> or <B4> and <B5> (Tk 8.0.4+) Adjusts view in widget up or down in increments of 4 lines. 

<Left> or <Control-b> Moves the insertion cursor one character back (left), clears any selection, and sets
the selection anchor.

<Right> or <Control-f> Moves the insertion cursor one character forward (right), clears any selection, and
sets the selection anchor.

<Shift-Left> Move the insertion cursor one character back (left) and extend the selection to
include the new character.

<Shift-Right> Move the insertion cursor one character forward (right) and extend the selection
to include the new character.

<Control-Left>  or <Meta-b> Move the insertion cursor back (left) by one word, clears any selection, and sets
the selection anchor.

<Control-Right>  or <Meta-f> Move the insertion cursor forward (right) by one word, clears any selection, and
sets the selection anchor.



<Shift-Control-Left> Move the insertion cursor back (left) by one word and also extend the selection.

<Shift-Control-Right> Move the insertion cursor forward (right) by one word and also extend the 
selection.

<Up> or <Control-p> Moves the insertion cursor up one line, clears any selection, and sets the selection 
anchor. 

<Down> or <Control-n> Moves the insertion cursor down one line, clears any selection, and sets the
selection anchor. 

<Shift-Up> Move the insertion cursor up one line and extend the selection to include the new 
line. 

<Shift-Down> Move the insertion cursor down one line and extend the selection to include the
new line. 

<Control-Up> Move the insertion cursor up by one paragraph, clears any selection, and sets the
selection anchor. 

<Control-Down> Move the insertion cursor down by one paragraph, clears any selection, and sets
the selection anchor. 

<Shift-Control-Up> Move the insertion cursor up by one paragraph and also extend the selection. 

<Shift-Control-Down> Move the insertion cursor down by one paragraph and also extend the selection. 

<Prior> Moves the insertion cursor up one screenful, clears any selection, and sets the
selection anchor. 

<Next> Moves the insertion cursor down one screenful, clears any selection, and sets the
selection anchor. 

<Shift-Prior> Move the insertion cursor up by one screenful and also extend the selection. 

<Shift-Next> Move the insertion cursor down by one screenful and also extend the selection. 

<Control-v>
(MS Windows only) Adjusts view in widget down by one screenful without
moving the insertion cursor or adjusting the selection. 

<Control-Prior> Adjusts view in widget left by one screenful without moving the insertion cursor
or adjusting the selection. 

<Control-Next> Adjusts view in widget right by one screenful without moving the insertion cursor
or adjusting the selection. 

<Home> or <Control-a> Move the insertion cursor to the beginning of the line and clears any selection.

<Shift-Home> Move the insertion cursor to the beginning of the line and also extends the
selection to that point.

<End> or <Control-e> Move the insertion cursor to the end of the line and clears any selection.

<Shift-End> Move the insertion cursor to the end of the line and also extends the selection to
that point.

<Control-Home> or <Meta-less> Move the insertion cursor to the beginning of the text and clears any selection. 

<Shift-Control-Home>
Move the insertion cursor to the beginning of the text and also extends the
selection to that point. 

<Control-End> or <Meta-greater> Move the insertion cursor to the end of the text and clears any selection. 

<Shift-Control-End>
Move the insertion cursor to the end of the text and also extends the selection to
that point. 

<Tab> Insert tab character and sets focus to current window.

<Shift-Tab> No function.

<Control-Tab> Changes focus to next window.

<Control-Shift-Tab> Changes focus to previous window. 

<Control-i> Insert tab character. 

<Return> Insert newline character and add separator to undo stack. 

<Select> or <Control-Space> Set the selection anchor to the position of the insertion cursor without affecting
the selection.



<Shift-Select> or 
<Shift-Control-Space>

Adjusts the selection to the current position of the insertion cursor, if there is one,
otherwise it selects from the anchor to the insertion cursor.

<Control-slash> Selects all the text in widget.

<Control-backslash> Clears any selection in the widget.

<Delete> Deletes the selection, if there is one, otherwise it deletes the character to the right
of the insertion cursor.

<BackSpace> or <Control-h> Deletes the selection, if there is one, otherwise it deletes the character to the left
of the insertion cursor.

<Insert> Insert current selection from clipboard at insertion cursor position.

<Control-x> Deletes the selection in the widget.

<Control-d> Deletes the character to the right of the insertion cursor.

<Control-k> Deletes all the characters right of the insertion cursor to the end of the line. If
insertion cursor is at the end of the line then the newline is deleted.

<Control-t> Reverses (transposes) the order of the two characters to the right of the insertion 
cursor.

<Control-o> Opens a new line by inserting a newline character in front of the insertion cursor
without moving the insertion cursor.

<Meta-d> Deletes the word to the right of the insertion cursor. 

<Meta-BackSpace> or 
<Meta-Delete>

Deletes the word to the left of the insertion cursor. 

<Keypress> Insert character into widget. 

<<Undo>> or <Control-z> or 
<Control-underscore>

(Tk 8.4+) Perform edit undo if the -undo option is true.

<<Redo>> or <Control-Z>  or 
<Control-y>

(Tk 8.4+) Perform edit redo if the -undo option is true. (MS Windows only 
<Control-y> ) 

<<Selection>> (Tk 8.4+) Generated whenever thesel tag range changes. 

<<Modified>> (Tk 8.4+) Generated whenever the text widget modified flag changes state. 

<<Paste>> Paste the contents of the clipboard into the text widget.

3.26 Toplevel Window
Command Description 

toplevel pathName
?options? 

Creates a toplevel window pathName with options and returns the new widget’s path name.
Used as a container for other widgets.

Toplevel Window Options

Standard
See Common Options and Resources in Options and Resources for full details.

-borderwidth -highlightcolor -pady  (Tk 8.4+) 

-cursor -highlightthickness -relief 

-highlightbackground -padx (Tk 8.4+) -takefocus



Toplevel Window Specific

See Coordinates in Options and Resources for screen unit options.

Configure 
Option

Resource 
Name

Resource 
Class

Description

-background 
color

background Background Same as standard -background expect if set to empty string, the widget
will not display or allocate a colormap entry for the background or border 
color. 

-class name class Class Specifies class name to use in querying the option database and for
bindings. Can not be changed with configure command. 

-colormap 
colormap

colormap Colormap Specifies colormap (default is same as parent) to use for the window where 
colormap can be new (allocate new colormap) or the name of another
window on same display with same visual. Can not be changed with 
configure command. 

-container 
boolean

container Container Specifies whether the toplevel will be a container to embed another
application. Can not be changed with configure command. 

-height height height Height Height of toplevel window in screen units.

-menu
pathName

menu Menu Specifies the menu widget to be used as a menubar at the top of the
window (or screen for Macs).

-screen screen Screen on which to place the window.

-use windowID use Use Toplevel should be embedded inside window identified by windowID (see 
winfo id) which was created as a container.

-visual visual visual Visual Specifies the visual to use for the window. Default is the same as the
parent. See Screen or Window Visuals below for options. Can not be
changed with configure command. 

-width  width width Width Width of toplevel window in screen units.

Toplevel Window Commands
Command Description

pathName cget option Returns the current value of the configuration option. See Toplevel Window Options above for 
options .

pathName configure
?option? ?value? ?option
value ...?

Change the configuration option to value. Without value, a list describing option is returned.
Without option, a list of all available options for pathName is returned. For multiple options an
empty string is returned. See Top Level Options above for options.

Screen or Window Visuals
Visual Description

class 
depth

Class name followed by integer depth. Classes are: directcolor, grayscale, greyscale, pseudocolor, 
staticcolor, staticgray,staticgrey, or truecolor. Depth specifies the bits per pixel for the visual. Same logic as 
best option (a).

default Use the default visual for current screen.

pathName Use same visual as window pathName . Must be on the same screen.

number Use the visual whose X identifier is number.

best 
?depth?

Choose the "best possible" visual, in decreasing order of priority: (a) visual decreasing order: visual with exact 
depth, visual with depth > depth (but as little extra as possible), visual with depth < depth(but with the greatest
depth possible); (b) without depth, then the deepest available visual is used; (c) class in decreasing order: 
pseudocolor,truecolor, or directcolor, staticcolor, staticgray, or grayscale ; (d) the default visual for the
screen is better than any other visual.



3.27 Window Information
See Coordinates in Options and Resources for screen unit options.

Command Description 

winfo atom ?-displayof 
window? name

Returns integer identifier for the atom given by name on window’s display (default is the
same as application’s main window). 

winfo atomname ?-displayof 
window? id

Returns textual name of the atom given by integer id on window’s display (default is the
same as application’s main window). 

winfo cells window Returns the number of cells in the colormap for window. 

winfo children window
Returns a list containing the path names of window’s children in stacking order except for
top-level windows. 

winfo class window Returns the class name of window. 

winfo colormapfull window Return 1 if the colormap for window is full, 0 if not. 

winfo containing ?-displayof 
window? rootX rootY

Returns the path name of window highest in the stacking order containing the point given
by rootX and rootY (in screen units) on window’s display (default is the same as
application’s main window) or empty string if none. 

winfo depth window Returns the depth of window in bits per pixel. 

winfo exists window Returns 1 if window exists, 0 if not. 

winfo fpixels window number
Returns a floating-point value giving the number of pixels in window corresponding to 
number distance in screen units. 

winfo geometry window Returns the pixel geometry for window, in the form widthxheightÂ±xÂ±y. 

winfo height window Returns height of window in pixels. 

winfo id window Returns a hexadecimal string indicating the platform-specific identifier for window. 

winfo interps ?-displayof 
window?

Returns a list of all Tcl interpreters registered on window’s display (default is the same as
application’s main window). 

winfo ismapped window Returns 1 if window is currently mapped, 0 if not. 

winfo manager window
Returns the name of the geometry manager currently responsible for window or empty
string if none. 

winfo name window Returns window’s name within its parent, as opposed to its full path name. 

winfo parent window
Returns the path name of window’s parent or empty string if window is the main window
of the application. 

winfo pathname ?-displayof 
window? id

Returns the path name of the window whose X identifier is id on window’s display
(default is the same as application’s main window). 

winfo pixels window number Returns the number of pixels in window rounded to the nearest integer value
corresponding to number distance in screen units.

winfo pointerx window
Returns the mouse pointer’s x root coordinate in pixels on window’s screen. Returns -1 if
the mouse pointer isn’t on the same screen as window. 

winfo pointerxy window
Returns a two element list of mouse pointer’s x and y root coordinates in pixels on 
window’s screen. Returns -1 for each coordinate if the mouse pointer isn’t on the same
screen as window. 

winfo pointery window
Returns the mouse pointer’s y root coordinate in pixels on window’s screen. Returns -1 if
the mouse pointer isn’t on the same screen as window. 

winfo reqheight window Returns a decimal string giving window’s requested height, in pixels. 

winfo reqwidth window Returns a decimal string giving window’s requested width, in pixels. 



winfo rgb window color
Returns a list of the three RGB values that correspond to color in window. See Colors in 
Options and Resources for valid color formats. 

winfo rootx window
Returns the x-coordinate of the upper-left corner of window (including its border if
present) in the root window of the screen. 

winfo rooty window
Returns the y-coordinate of the upper-left corner of window (including its border if
present) in the root window of the screen. 

winfo screen window
Returns the name of the screen associated with window, in the form 
displayName.screenIndex. 

winfo screencells window Returns the number of cells in the default color map for window’s screen. 

winfo screendepth window Returns the depth of window’s screen in bits per pixel. 

winfo screenheight window Returns the height of window’s screen in pixels. 

winfo screenmmheight 
window

Returns the height of window’s screen in millimeters. 

winfo screenmmwidth 
window

Returns the width of window’s screen in millimeters. 

winfo screenvisual window
Returns the visual class of window’s screen. Options are: directcolor, grayscale, 
pseudocolor,staticcolor, staticgray, or truecolor. 

winfo screenwidth window Returns the width of window’s screen in pixels. 

winfo server window Returns a platform specific formatted string containing information about the server for 
window’s display.

winfo toplevel window Returns the pathname of the top-level window containing window. 

winfo viewable window Returns 1 if window and all of its ancestors up through the nearest toplevel window are
mapped, 0 if not.

winfo visual window
Returns the visual class of window. Options are: directcolor, grayscale, 
pseudocolor,staticcolor , staticgray, or truecolor. 

winfo visualid window Returns the X identifier of the visual for window.

winfo visualsavailable 
?windowincludeids?

Returns a list that describes the visuals available for window’s screen where each element
is a sublist of the class and depth in bits per pixel. 

winfo vrootheight window
Returns the height of the virtual root window associated with window if there is one,
otherwise the height of window ’s screen. 

winfo vrootwidth window
Returns the width of the virtual root window associated with window if there is one,
otherwise the width of window’s screen. 

winfo vrootx window
Returns the x-offset of the virtual root window associated with window relative to the root
window of its screen or 0 if there isn’t a virtual root window for window. 

winfo vrooty window
Returns the y-offset of the virtual root window associated with window relative to the root
window of its screen or 0 if there isn’t a virtual root window for window. 

winfo width window Returns window’s width in pixels. 

winfo x window
Returns x-coordinate of the upper-left corner of window (including its border if present)
in its parent. 

winfo y window
Returns y-coordinate of the upper-left corner of window (including its border if present)
in its parent. 

3.28 Window Management
Command Description 

bell ?-displayof window? 
?-nice?

Rings the X bell on window’s (default is ".") display. In Tk 8.4+ the screen saver is reset if 
-nice is not specified. 



destroy ?window ...?
Deletes each window and all their descendents. If window "." is destroyed, the entire
application will be deleted. Windows are deleted in order, but stops if an error occurs. If a
window doesn’t exist, no error is returned. 

focus Returns the path name of the focus window on the display containing the application’s
main window or an empty string if not the same application.

focus window Changes focus to window on window’s display. Does not alter which top-level has the input
focus for the the display.

focus -displayof window Returns the path name of the focus window on the display containing window or an empty
string if not the same application.

focus -force window Sets the focus of window’s display to window, even if the application doesn’t currently
have the input focus for the display.

focus -lastfor window Returns the name of the most recent window to have the input focus among all the
windows in the same top-level as window. If none or it was deleted, then the name of the
top-level is returned.

grab ?-global? window Same as grab set.
grab current ?window? Returns name of current grab window on window’s display or empty string if not the same

application. Without window, returns list of all windows grabbed by application for all 
displays.

grab release window Releases grab on window.

grab set ?-global? window Sets a local grab (grabbing application only) on window unless -global (locks out all other
apps on screen except subtree of grabbing app) is specified. If grab was already in effect, it
is released.

grab status window Returns current grab state (none,local, or global) for window.

lower window ?belowThis? Places window below window belowThis (default is below all siblings) in stacking order.

raise window ?aboveThis? Places window above window aboveThis (default is above all siblings) in stacking order. In
Tk 8.3.4+, it does not block for 2 seconds.

tk_focusFollowsMouse Change focus model of application to an implicit one where the focus follows the mouse 
pointer.

tk_focusNext window Returns the window just after window in focus order.

tk_focusPrev window Returns the window just before window in focus order.

tk appname ?newName? Sets and returns the application’s interpreter name to newName (must not start with
uppercase char) appending # and an integer if necessary to create a unique name. Without 
newName , returns current name. Reenables the send command if it was deleted.

tk caret window ?-x x? ?-y 
y? ?-height height?

(Tk 8.4+) Sets the caret location for the display of the specified Tk window window. The
caret is the per-display cursor location used for indicating global focus. x and y represent
window-relative coordinates, and height is the height of the current cursor location, or the
height of the specified window if none is given. Without any options, the last used values
are returned.

tk scaling ?-displayof 
window? number

Set scaling factor for conversion between physical units and pixels on window’s display
(default is current) where number (floating point value) is the pixels per point (1/72 inch).

tk useinputmethods 
?-displayof window? 
?boolean?

(Tk 8.3+) Specifies whether Tk should use XIM (X Input Methods) for filtering events on 
window (default is main window). Without boolean, the current setting is returned (default
is on in Tk 8.3.3+ and off for previous versions).

tk windowingsystem (Tk 8.4+) Returns the current Tk windowing system. Options are: x11 (X11-based), win32
(MS Windows), classic (Mac OS Classic), or aqua (Mac OS X Aqua).

wm aspect window
?minNumer minDenom
maxNumer maxDenom?

Specifies the aspect ratio of window (width/length) to be constrained to lie between 
minNumer/minDenom and maxNumer /maxDenom. If all are set to empty strings, then any
existing aspect ratio restrictions are removed. Without options a list of the current values is 
returned. 

wm attributes window
?option value ...?

(Tk 8.4+) Change the platform specific window manager attribute (used by MS Windows
only) option to value . Without value, the current value for option is returned. Without 
option, a list of all platform specific flags and their values is returned. Options are:



-alpha value
(Tk 8.4.8+ MS Windows, Mac OSX) set alpha transparency. 0.0 (completely transparent)
to 1.0 (opaque). Default is 1.0.

-disabled ?boolean? (MS Windows only) Window disabled status

-fullscreen ?boolean? (Tk 8.5+ MS Windows only) Requests that the window should fill the entire screen and
have no window decorations.

-modified ?boolean?
(Mac OSX) Window modification state (determines whether the window close widget

contains the modification indicator).

-titlepath ?path?
(Mac OSX) Window proxy title path (file referenced as the window proxy icon which can
be dragged and dropped in lieu of the file’s finder icon). 

-toolwindow ?boolean? (MS Windows only) Specifies style of the window as toolwindow.

-topmost ?boolean? (MS Windows only) Requests that this window should be kept above all other windows
that do not also have the -topmost attribute set.

-zoomed?boolean? (UNIX TBD) Requests that the window should be maximized. Same as wm state zoomed
on Windows. 

wm client window ?name?
Store name in window’s WM_CLIENT_MACHINE  property to specify the machine the
window is running on. Without name, returns last name set with wm client. If set to an
empty string, the property is deleted. 

wm colormapwindows 
window ?windowList?

Store windowList in window’s WM_COLORMAP_WINDOWS  property to identify the
internal windows within window that have private colormaps. Without windowList, returns
a list of windows in the property with different colormaps. 

wm command window 
?value?

Store list value in window’s WM_COMMAND  property. Informs window manager of
command used to invoke the application. Without value, returns last value set with wm 
command. If set to an empty string, the property is deleted. 

wm deiconify window Arrange for window to be displayed (mapped) in normal (non-iconified) form. 

wm focusmodel window 
?option?

Specifies the focus model for window. Options are: active (claim focus for itself or
decendents) or passive (default option to never claim focus for itself).Without option,
returns the current focus model. 

wm frame window
Returns the platform specific window identifier for the outermost decorative frame that
contains window. If window has none, returns the platform specific ID of window itself. 

wm geometry window 
?newGeometry?

Changes geometry of window to newGeometry using in the form of: widthxheightÂ±xÂ±y.
Without newGeometry, returns current geometry. 

wm grid window ?baseWidth
baseHeight widthInc 
heightInc?

Indicates that window is to be managed as a gridded window with the specified relation
between grid and pixel units. BaseWidth and baseHeight specify the number of grid units
corresponding to the pixel dimensions requested internally by window.WidthInc and 
heightInc specify the number of pixels in each horizontal and vertical grid unit. If all are set
to empty strings, then window will no longer be managed as a gridded window. Without
options a list of the current values is returned. 

wm group window 
?pathName?

Gives path name for leader of group to whichwindow belongs. Without pathName, returns 
window ’s current group leader. When set to empty string, window is removed from any 
groups. 

wm iconbitmap window 
?bitmap?

Specifies a bitmap to use as icon image when window is iconified. If set to an empty string,
then the current bitmap is cancelled. Without bitmap, the current bitmap name is returned
or empty string if none. If a "@" is the first char, the bitmap is a filename. Unix uses .xbm
files and windows uses .ico files.

wm iconbitmap window 
-default filename.ico

(Tk 8.3.3+, MS Windows only) Specifies a bitmap file to use as icon image when window
is iconified. Overridden by wm iconphoto.

wm iconify window Arrange for window to be iconified. 

wm iconmask window 
?bitmap?

Specifies a bitmap to use to mask icon image when window is iconified. If set to an empty
string, then the current bitmap is cancelled. Without bitmap, the current bitmap name is
returned or empty string if none. 



wm iconname window 
?newName?

Specifies name to use as a label for window ’s icon. If set to an empty string, then the
current name is cancelled and the window’s title is used. Without newName, the current
name is returned or empty string if none. 

wm iconphoto window
?-default? image1 ?image2 
...?

(Tk 8.5+ MS Windows and UNIX) Specifies a image to use as icon image in titlebar and
when window is iconified. If -default is specified, this is applied to all future created
toplevels as well. Multiple images are accepted to allow different images sizes (eg, 16x16
and 32x32) to be provided. On UNIX, only use 2 images and put larger image first.

wm iconposition window ?x 
y?

Specifies hints for position x and y on root window to place window’s icon. If set to empty
strings, then the current position is cancelled. Without x y, a list of the current values is
returned or empty string if none. 

wm iconwindow window 
?pathName?

Specifies the path name of window to use as the icon when window is iconified. If set to an
empty string, then the current icon window is cancelled. Without pathName, the current
name of the icon window is returned or empty string if none. 

wm maxsize window ?width 
height?

Specifies maximum window size for window in pixels or grids for gridded windows. If set
to empty strings, the sizes default to the screen size. Without width height, a list of the
current max sizes is returned. 

wm minsize window ?width 
height?

Specifies mimum window size for window in pixels or grids for gridded windows. If set to
empty strings, the sizes default to one pixel in each dimension. Without width height, a list
of the current min sizes is returned. 

wm overrideredirect 
window ?boolean?

Specifies the override-redirect flag for window which is commonly used by the window
manager to determine whether window should show a decorative frame. 

wm positionfrom window 
?who?

Specifies whether window’s current position was program or user requested. If set to an
empty string, the current position source is cancelled. Without who, the current position
source is returned. 

wm protocol window
?name? ?command?

Specify a Tcl command to be invoked for messages of protocol name. Valid values for 
name are: WM_DELETE_WINDOW , WM_SAVE_YOURSELF , or 
WM_TAKE_FOCUS . Without command , the current command for name is returned. If 
name is set to an empty string, then current handler is deleted. Without name or command ,
a list of all protocol handlers is returned. 

wm resizable window
?widthBoolean 
heightBoolean?

Specifies whether window’s width and/or height is resizable (default is true for both).
Without the options, a list of the current values is returned. 

wm sizefrom window ?who?
Specifies whether window’s current size was program or user requested. If set to an
empty string, the current size source is cancelled. Without who, the current size source is 
returned. 

wm stackorder window
?option? ?newWindow?

(Tk 8.4+) Returns stacking order of window’s children in lowest to highest order. Returns
relative position of window compared to newWindow based on options isabove and 
isbelow.

wm state window 
?newState?

Returns current state of window. In Tk 8.3+, newState changes the current state of window.
Options are: normal, icon, iconic, withdrawn , and zoomed (MS Windows only). 

wm title window ?string?
Specifies the title for window’s decorative frame. Without string, the current name is 
returned. 

wm transient window 
?master?

Informs window manager that window is a transient of the window master. If set to an
empty string, then window is not marked as a transient window. Without master, the path
name of window’s current master, or an empty string if none, is returned. 

wm withdraw window Arranges for window to be withdrawn (unmapped) from the screen. 



4 Other Tcl Packages

4.1 dde Package
(TCL 8.1+, MS Windows only) Execute a Dynamic Data Exchange (DDE) command. DDE is used by windows
applications to exchange data. Each DDE transaction needs a service name and a topic. Tcl uses the service name TclEval,
while the topic name is the name of the interpreter given by dde servername. 

Command Description 

dde eval ?-async?
topic cmd ?arg arg
...? 

(Tcl 8.5+) Evaluates a command and its arguments using the interpreter specified by topic. The DDE
service must be the TclEval service. The -async option requests asynchronous invocation. Returns an
error message if the script did not run unless the -async option was specified.

dde execute
?-async? service
topic data

Sends data to the server indicated by service with the topic topic. Typically the application name is
the service, the filename is the topic, and data is a script to be run on the file. The -async flag
requests an asynchronous invocation. An error message will be returned if the script does not run
unless the -async flag was specified.

dde poke service
topic item data

(Tcl 8.2+) Sends data as the value for item to the server indicated by service with the topic topic.
Typically the application name is the service, the command or filename is the topic, item is
application specific but is often not used (can’t be null), and data is the value to use. 

dde request
?-binary? service
topic item

Returns the value of item from the server indicated by service with the topic topic. Typically the
application name is the service, the filename is the topic, and item is application specific. In Tcl
8.4+, if -binary is specified, the result is returned as a byte array, otherwise a null terminated string is 
assumed.  

dde servername
?options? ?--? 
?topic?

Registers the interpreter as a DDE server with the service name TclEval and the topic name topic.
Without topic, the current topic or an empty string (if no service is registered) will be returned.

-force (Tcl 8.5+) Forces registration of precisely the given topic name. 

-handler proc
(Tcl 8.5+) Specifies a Tcl procedure that will be called to process calls to the dde server. Must be
used if the package has been loaded into a safe interpreter. The procedure is called with all the
arguments provided by the remote call. 

dde services service 
topic

Returns a list of service-topic pairs that currently exist on the machine matching service and topic. If
a null is used for service and/or topic, all services and/or topics will be returned. Returns a null if no
matches were found.

4.2 http Package
(Tcl 8.0+) 



Command Description 

::http::cleanup token

::http::code token

::http::config ?options?

-accept mimetypes

-proxyhost hostname

-proxyport number

-proxyfilter command

-urlencoding encoding (Tcl 8.4.7+)

-useragent string

::http::data token

::http::error token

::http::formatQuery key value ?key value ...?

::http::geturl url ?options?  

-binary boolean

-blocksize size

-channel name

-command callback

-handler callback

-headers keyvaluelist

-progress callback

-query query

-queryblocksize size

-querychannel channelID

-queryprogress callback

-timeout milliseconds

-type mime-type (Tcl 8.2.3+)

-validate boolean

::http::ncode token

::http::register proto port command (Tcl 8.2.3+) 

::http::reset token ?why?

::http::size token

::http::status token

::http::unregister proto (Tcl 8.2.3+) 

::http::wait token

4.3 msgcat Package
The msgcat package provides a set of functions that can be used to manage multi-lingual user interfaces. Text strings are
defined in a ‘‘message catalog’’ which is independent from the application, and which can be edited or localized without
modifying the application source code. New languages or locales are provided by adding a new file to the message catalog.



Command Description 

::msgcat::mc src-string ?arg
arg ...?

(Tcl 8.1+) Returns a translation of src-string according to the user’s current locale.
Searches from the current namespace up to the global namespace. If none found, returns
result of ::msgcat::mcunknown. If additional arguments past src-string are given, the
format command is used to substitute the additional arguments in the translation of
src-string. 

::msgcat::mcload dirname (Tcl 8.4+) Reads the contents of files in  dirname that match the language specifications
returned by ::msgcat::mcpreferences and have a ".msg" extension.

::msgcat::mclocale 
?newLocale?

(Tcl 8.1+) Sets the locale to newLocale (case insensitive). Without newLocale, returns the
current locale.

::msgcat::mcmax ?src-string
src-string ...?

(Tcl 8.4+) Returns the length of the longest translated src-string. 

::msgcat::mcmset locale 
src-trans-list

(Tcl 8.4+) Sets the translation for multiple source strings in src-trans-list (list of src-string
and translate-string pairs) in the specified locale and the current namespace.

::msgcat::mcpreferences
(Tcl 8.1+) Returns a list of the user preferred locales in most specific to least specific order,
based on the user’s language specification.

::msgcat::mcset locale
src-string ?translate-string?

(Tcl 8.1+) Sets the translation for src-string to translate-string in the specified locale and
the current namespace. If translate-string is not specified, src-string is used for both.

::msgcat::mcunknown locale 
src-string

(Tcl 8.1+) Used by ::msgcat::mc when src-string is not defined in the current locale.
Default action is to return src-string. Can be redefined to do other things.

Tcl 8.5 adds: msgcat::mcpreferences command will be modified to add the empty string as a list element after the elements
corresponding to the current locale.

Locale Specification
Defult locale is specified at start-up by checking for the first non-empty value in the ::env(LC_ALL) variable,
::env(LC_MESSAGES) variable , ::env(LANG) variable, and the Windows registry (MS Windows only). Defaults to a
locale of "C".

Locale Format Name Example
language[_country][_modifier] The country, language, and system-specific codes.

language[_country] The country and language codes. en_US

language The language code. en

{} (Tcl 8.5+) Root locale

The country and language codes are specified in standards ISO-639 and ISO-3166

4.4 registry Package
(MS Windows only) The registry package provides a general set of operations for manipulating the Windows registry.



Command Description 

registry broadcast
keyName ?-timeout 
milliseconds?

(Tcl 8.4.1+) Sends a broadcast message to the system and running programs to notify them of
an update to keyName. Used for environment updates, etc. The timeout specifies how long to
wait (default is 3000) for applications to respond to the broadcast message.

registry delete keyName 
?valueName?

Deletes valueName from the registry under keyName. Without valueName, keyName and all
values under it are deleted. Returns an error if the keyNameor ValueName could not be 
deleted.

registry get keyName 
valueName

Returns the data associated with the value valueName under the key keyName. Returns an
error if keyName or ValueName doesn’t exist. See Supported Data Types below, for the 
types.

registry keys keyName 
?pattern?

Returns a list of names of the subkeys under keyName matching pattern (using Pattern 
Globbing), if specified, or all subkeys without pattern. Returns an error if keyName doesn’t 
exist. 

registry set keyName
?valueName data ?type??

Sets valueName under keyName to data with type type (defult is sz). Creates the key

keyName if it doesn’t already exist. Without valueName,the key is only created if it doesn’t 
exist. See Supported Data Types below, for the types. 

registry type keyName 
valueName

Returns the type of the value valueName in the key keyName. See Supported Data Types
below, for the types. 

registry values keyName 
?pattern?

Returns a list of names of the values under keyName matching pattern (using Pattern 
Globbing), if specified, or all values without pattern. Returns an error if keyName doesn’t 
exist. 

Key Name Formats
Valid keyName formats (where keypath can be one or more registry key names separated by backslash (\) characters):

\\hostname\rootname\keypath 

rootname\keypath

rootname

Root Name Formats:
Valid rootname components:

HKEY_LOCAL_MACHINE

HKEY_USERS

HKEY_CLASSES_ROOT

HKEY_CURRENT_USER

HKEY_CURRENT_CONFIG

HKEY_PERFORMANCE_DATA

HKEY_DYN_DATA

Supported Data Types:



Type Description Representation

binary The registry value contains arbitrary binary data. binary string

none The registry value contains arbitrary binary data with no defined type. binary string 

sz The registry value contains a null-terminated string. string

expand_sz
The registry value contains a null-terminated string with unexpanded references to env
vars in Windows style (eg. "%PATH%")

string

dword The registry value contains a little-endian 32-bit number. decimal string

dword_big_endian The registry value contains a big-endian 32-bit number. decimal string

link The registry value contains a symbolic link. binary string 

multi_sz The registry value contains an array of null-terminated strings. list of strings

resource_list The registry value contains a device-driver resource list. binary string 

Unknown types are with the 32-bit integer for that type code returned by the system interfaces and the data is represented
as a binary string.

4.5 resource Package
(Mac only)

4.6 tcltest Package
(Tcl 8.2+) 

Appendix A: Command Index



Command Sect#CommandSect#Command Sect#Command Sect#
after 2.07 fconfigure 2.10menu 3.16 tcl_endOfWord 2.17 
append 2.17 fcopy 2.10menubutton 3.17 tcl_findLibrary 2.03 
array 2.01 file 2.08 message 3.18tcl_startOfNextWord 2.17 
auto_execok 2.03 fileevent 2.08::msgcat 4.3 tcl_startOfPreviousWord 2.17 
auto_import 2.03 flush 2.10namespace 2.14 tcl_wordBreakAfter 2.17 
auto_load 2.03 focus 3.28open 2.10 tcl_wordBreakBefore 2.17 
auto_mkindex 2.03 font 3.9 option 3.19 tcltest 4.6
auto_mkindex_old 2.03 for 2.04pack 3.11 tell 2.10 
auto_qualify 2.14 foreach 2.04package 2.15 text 3.25
auto_reset 2.03 format 2.17panedwindow 3.20 time 2.03 
bell 3.28 frame 3.10 parray 2.01 tk 3.28 
bgerror 2.03 gets 2.10pid 2.10 tkwait 2.07  
binary 2.17 glob 2.10 place 3.11 tk_bisque 3.19 
bind 3.1 global 2.16 ::pkg 2.15 tk_chooseColor 3.7
bindtags 3.1 grab 3.28 pkg_mkIndex 2.15 tk_chooseDirectory 3.7 
break 2.04 grid 3.11 proc 2.16 tk_dialog 3.7 
button 3.2 history 2.09 puts 2.10 tk_focusFollowsMouse 3.28 
canvas 3.3 ::http 4.2 pwd 2.10 tk_focusNext 3.28 
case 2.04 if 2.04 radiobutton3.21 tk_focusPrev 3.28 
catch 2.03 image 3.12 raise 3.28 tk_getOpenFile 3.7 
cd 2.10 incr 2.18 read 2.10 tk_getSaveFile 3.7 
checkbutton 3.4 info 2.11 regexp 2.17 tk_menuSetFocus 3.16 
clipboard 3.5 interp 2.12 registry 4.4 tk_messageBox 3.7 
clock 2.02 join 2.13 regsub 2.17 tk_optionMenu 3.17 
close 2.10 label 3.13 rename 2.03 tk_popup 3.16 
concat 2.13 labelframe3.14 resource 4.5 tk_setPalette 3.19 
console 3.6 lappend 2.13 return 2.16 tk_textCopy 3.25 
consoleinterp 3.6 lassign 2.13 ::safe 2.12 tk_textCut 3.25 
continue 2.04 lindex 2.13 scale 3.22 tk_textPaste 3.25 
dde 4.1 linsert 2.13 scan 2.17 toplevel 3.26
destroy 3.28 list 2.13 scrollbar 3.23 trace 2.18 
dict 2.05 listbox 3.15 seek 2.10 unknown 2.03 
encoding 2.06 llength 2.13 selection 3.5unload 2.03 
entry 3.8 load 2.03 send 2.03 unset 2.18 
eof 2.10 lower 3.28 set 2.18 update 2.07 
error 2.03 lrange 2.13 socket 2.10 uplevel 2.18 
eval 2.03 lrepeat 2.13 source 2.03 upvar 2.18 
event 3.1 lreplace 2.13 spinbox 3.24 variable 2.14 
exec 2.10 lsearch 2.13 split 2.13 vwait 2.07 
exit 2.03 lset 2.13 string 2.17 while 2.04 
expr 2.03 lsort 2.13 subst 2.03 winfo 3.27
fblocked 2.10 memory 2.11 switch 2.04 wm 3.28

http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Menubutton_Widget
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Console
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Command_Evaluation_
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Variables
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Event_Loops_and_Handlers
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Variables
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Variables
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Namespaces
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Event_Loops_and_Handlers
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Control_Statements_
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Window_Information
http://home.houston.rr.com/brianohagan/tcl_tk_ref_guide.html#Window_Management

	Contents
	
	References:
	Conventions

	 1 Fundamentals 
	 1.1 Shells 
	Shell Provided Variables

	 1.2 System Variables
	TCL Variables
	TK Variables 

	 1.3 Syntax
	 1.4 Operators and Expressions
	Operands 
	Operators
	Math Functions

	 1.5 Pattern Globbing 
	 1.6 Regular Expressions
	 1.7 Advanced Regular Expressions
	Quantifiers
	Atoms
	Simple Constraints
	Bracket Expressions
	Character Classes
	Character-Entry Escapes
	Class-Shorthand Escapes
	Constraint Escapes
	Metasyntax 
	Expanded Syntax
	Comments
	Matching

	 2 Tcl Commands 
	 2.01 Arrays
	 2.02 Clock
	 2.03 Command Evaluation 
	 2.04 Control Loops
	 2.05 Dictionary
	 2.06 Encodings 
	Common Encodings

	 2.07 Event Loop Handlers 
	 2.08 File Attributes 
	 2.09 History
	Command Line Shortcuts

	 2.10 Input/Output 
	 2.11 Interpreter Information 
	 2.12 Interpreters 
	Slave Interpreters
	Safe Interpreter Exposed Commands

	
	
	Safe Interpreter Hidden Commands
	Tcl Library Commands Not Included in a Safe Interpreter

	
	
	Auto Loaded Commands Not Included in a Safe Interpreter
	Safe Interpreter Aliases


	 2.13 Lists
	 2.14 Namespaces 
	 2.15 Packages 
	 2.16 Procedures
	 2.17 Strings 
	 2.18 Variables 
	 3 Tk Commands 
	3.1 Bindings and Events 
	Tags 
	Event Sequence Patterns 
	Modifiers:
	Event Types: 
	Details: 
	Keysyms: 
	Default Virtual Events: 

	Binding Matches
	Order of Tests

	Event Generation and Substitutions 

	3.2 Button Widget 
	Button Widget Options
	Standard
	Button Widget Specific

	Button Widget Commands
	Default Button Widget Bindings

	3.3 Canvas Widget
	Canvas Options
	Standard
	Canvas Specific

	Item IDs and Tags
	Indicies or Character Positions:
	Canvas Commands
	Canvas Item Standard Options
	Canvas Item Commands

	3.4 Checkbutton
	Checkbutton Options
	Standard 
	Checkbutton Specific

	Checkbutton Commands
	Default Checkbutton Bindings

	3.5 Clipboard and Selection
	Definitions
	Selection Atom Types
	Common Target Atom Types
	Common Selection Property Types

	3.6 Console
	Default Console Bindings

	3.7 Dialogs
	3.8 Entry Widget
	Entry Options
	Standard
	Entry Specific

	Validation Types
	Percent Substitutions
	Indicies or Character Positions
	Entry Widget Commands 
	Default Entry Widget Bindings

	3.9 Fonts
	Font Description 
	Font Options
	Font Metrics
	Default Cross-Platform Fonts
	System Specific Fonts
	X Windows:
	MS Windows:
	Mac:


	3.10 Frame Widget
	Frame Options
	Standard
	Frame Specific

	Frame Commands 

	3.11 Geometry Mangement
	Grid 
	Grid Relative Placement 

	Pack 
	Place

	3.12 Images
	Image Commands
	The Bitmap Image Type
	The Photo Image Type 

	3.13 Label Widget
	Label Widget Options
	Standard
	Label Widget Specific

	Label Widget Commands

	3.14 Labelframe Widget 
	Labelframe Widget Options
	Standard
	LabelFrame Specific

	Labelframe Commands

	3.15 Listbox Widget
	Listbox Widget Options
	Standard
	Listbox Widget Specific

	Indicies or Character Positions
	Listbox Widget Commands
	Default Listbox Widget Bindings

	3.16 Menu Widget
	Menu Widget Options
	Standard
	Menu Widget Specific

	Indicies
	Menu Widget Commands 
	Entry Types 
	Menu Entries
	General 
	Menu Entry Specific 
	Menu Entry Format: 
	Special System Dependent Menus:

	Menu Configurations
	Menu Widget Bindings

	3.17 Menubutton Widget
	Menubutton Widget Options
	Standard
	Menu Widget Specific

	Menubutton Widget Commands
	Menubutton Widget Bindings

	3.18 Message Widget
	Message Widget Options
	Standard
	Message Widget Specific

	Message Widget Commands

	3.19 Options and Resources
	Widget Options and Resources:
	Common Options and Resources
	Default Bitmaps 
	Colors:
	Special MS Windows Colors:

	Coordinates:
	Cursors:

	3.20 Panedwindow
	Panedwindow Options
	Standard
	Panedwindow Specific

	Panedwindow Commands

	3.21 Radiobutton
	Radiobutton Options
	Standard 
	Radiobutton Specific

	Radiobutton Commands
	Default Radiobutton Bindings

	3.22 Scale Widget
	Scale Widget Options
	Standard 
	Scale Widget Specific

	Scale Elements
	Scale Commands
	Scale Bindings

	3.23 Scrollbar
	Scrollbar Widget Options
	Standard 
	Scrollbar Widget Specific

	Scrollbar Elements
	Scrollbar Commands
	Scrollbar Commands
	Scrollbar Bindings

	3.24 Spinbox Widget
	Spinbox Widget Options
	Standard 
	Spinbox Widget Specific

	Validation Types
	Percent Substitutions
	Indicies or Character Positions
	Spinbox Widget Commands 
	Default Spinbox Widget Bindings

	3.25 Text Widget
	Text Widget Options
	Standard 
	Text Widget Specific

	Indicies or Character Positions:
	Annotations 
	Tag Options 
	Embedded Window Options 
	Embedded Image Options 
	Selection Support

	Undo Mechanism
	Text Widget Commands 
	Default Text Widget Bindings

	3.26 Toplevel Window
	Toplevel Window Options
	Standard
	Toplevel Window Specific

	Toplevel Window Commands 
	Screen or Window Visuals

	3.27 Window Information
	3.28 Window Management
	 4 Other Tcl Packages
	4.1 dde Package 
	4.2 http Package 
	4.3 msgcat Package 
	Locale Specification

	4.4 registry Package 
	Key Name Formats
	Root Name Formats:
	Supported Data Types:

	4.5 resource Package 
	4.6 tcltest Package 
	Appendix A: Command Index

