Using Stacks to Evaluate Balanced Delimiters

Lab #03

Roy Keene

Section #04

Lakshmy Ramaswamy

10 September 2002

Conclusions and Analysis

In this lab experiment we implemented a Stack class using an array and a program to check for problems with delimiters in expressions using the Stack class that was developed. When a '(', '[', or '{' was encountered a 1, 2, or 3 (respectively) was pushed onto the stack (found by dividing the value by 40 and casting to integer type). Then as a ')', ']', or '}' was found, the value popped off the stack and compared to the converted value of the current character. If they do not match, an error is printed and the value is put back on the stack to attempt to match it again. When the end of the expression or a '#' is reached the stack is checked, if it is not empty, it is printed out. If it is empty and no other errors had occurred, the expression is declared valid and a message is printed out.

An array is of fixed size so implementing a stack on top of an array limits the size of the stack, however you can dynamically create new and larger arrays to overcome this problem. In our implementation, if a Push() occurs when the array is full, a new array that is twice the size of the previous one is created and all the values are duplicated. This will prevent the array from becoming full and will occur less frequently as the size is doubled rather than incremented.

Test Log

Test Log for Stack Tests

Operation
Return Value
Stack Contents after Operation

Push(1)
<void>
1

Push(2)
<void>
1,2

Pop()
2
1

Pop()
1
<empty>

Empty()
TRUE
<empty>

Full()
FALSE
<empty>

Pop()
-1
<empty>

Test Log for Expression Evaluator

Expression
Result
Unexpected
Unmatched

(a+z))
Unexpected ')'
1
0

{(})
Unexpected '}'

Unmatched '{'
1
1

(a+b)/{([x})}
Unexpected '}'

Unexpected ')'

Unexpected '}'

Unmatched '['

Unmatched '('

Unmatched '{'
3
3

[[{{[]]]]
Unexpected ']'

Unexpected ']'

Unexpected ']'

Unmatched '{'

Unmatched '{'

Unmatched '['

Unmatched '['
3
4

{([{[()]}]}
Balanced
0
0

Postlab Questions and Answers

 1. Change your stack limit to 5 and run your evaluator with the following expression:

{a+(c*[d-{3+a*[f+(j-5)+3]-4}/12])*5}

Did your program generate any errors? What does this indicate about the use of a fixed size underlying structure, e.g., an array, to implement stacks? Explain your answer.

(a) Yes.

(b) Fixed size arrays as the underlying structure for a stack can give incorrect results if the Full() function is not checked before Push()'ing because data that is passed to Push() may not make it on to the stack because of this condition.

 2. Suppose that we need one stack for storing floating point values and another for storing integer values within the same program. Could we use the same stack class defined in stack.cpp? If so, explain why. If not, explain why not and describe generally how this could be done without using templates.

(a) No.

(b) One solution to this would be to make an interface for void Push(float) , float Pop(void), and float Top(void).

 3. Describe the steps necessary to perform a push operation on a stack. Describe the steps necessary to perform a pop operation on a stack. What value should the top-of-stack contain when the stack is empty?

(a) To push onto the stack:

 i. Check to ensure that the stack is not full

 ii. Increment StackLocation variable to unused area of stack

 iii. Set unused area of stack's value to the parameter of push.

(b) To pop from the stack:

 i. Check to ensure that the stack is not empty.

 ii. Get the value of the current area on the stack.

 iii. Deincrement the StackLocation variable.

 iv. Return the value retrieved.

(c) -1

